Open this publication in new window or tab >>2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The future of X-ray ptychography, a coherent diffraction imaging method, promises unprecedented resolution and experimental efficiency while probing features on samples that are increasingly more complicated. This is enabled by sophisticated imaging methods, combining highly optimized hardware, software and procedure.
In this thesis, several aspects of an X-ray ptychography experiment are addressed, emphasizing the enhanced versatility and effectiveness achieved through the use of multiple beams.
Starting with a comprehensive understanding of nanofabrication, the production of focusing X-ray optics is discussed. Specifically, a direct-write lithographic process was developed and its details are described, with particular emphasis on electron-beam lithography at 50 kV acceleration voltage on chemically semi-amplified resist. This process is both versatile and precise, ultimately facilitating the fabrication of Fresnel zone plates (FZPs).
The thesis thus reports on the application of several FZPs in parallel, used to generate multiple X-ray beams to perform ptychography. In particular, novel extensions to the standard ptychographic approach are investigated.
Research on multi-beam X-ray ptychography began with closely spaced FZPs, arranged in a linear array on the same chip, emulating and advancing previous research on the topic and demonstrating the readiness of the self-made hardware for more sophisticated implementations. Most notably, the FZPs wereas close as 48 μm from one another, and up to three beams were used contemporarily, extending the imaged field of view (FOV) by a factor of three.
Next, a novel setup was introduced, promoting the concept of adaptivity within the context of multi-beam X-ray ptychography thanks to FZPs that are stacked and motorized. The possibility of moving the focusing optics in between measurements conferred a status of unprecedented versatility to said setup. The optics did not have to be redesigned for every new iteration of the experiment, sample change, or detecting conditions. It was enough to use the respective motors and adapt the setup to the new measurements. Gold nanocrystal clusters were imaged with a variety of beam spacings, enabling imaging over equally spaced regions on the sample and extending the FOV by a factor of two.
The success of this setup led to its implementation in more complicated measurements, ultimately resulting in the demonstration of simultaneous multi-beam and multi-slice ptychography—these two had never been put together before.
Two-layered samples were imaged, with a layer-to-layer separation ranging from 1400 μm down to 100 μm, with no compromise in resolution as compared to single beam ptychographic measurements.
Finally, the focusing action of FZPs was combined with reflection by curated mirrors to provide an angled perspective on samples in a novel X-ray stereo vision experiment. Here, the depth resolution on a multi-layered sample could be improved from several μm down to 300 nm, again, with no compromise on resolution as compared to single beam ptychography.
For all of these approaches to X-ray ptychography there is one major implication: samples that are larger in all three dimensions can be more readily addressed. In fact, optimized multi-beam X-ray ptychography makes use of more coherent flux from the X-ray source, distributing more photons on the sample and collecting more data across a larger field of view during the same experiment time. Furthermore, thanks to multi-slicing and stereo vision, the depth resolution aspect can be addressed simultaneously.
Abstract [sv]
Framtiden för röntgenptykografi, en koherent diffraktionsavbildningsteknik, ser lovande ut, med rekordupplösning och ökad experimentell effektivitet på studier av prover som blir alltmer komplexa. Detta möjliggörs av sofistikerade avbildningsmetoder som kombinerar optimerad hårdvara, mjukvara och procedurer.
I denna avhandling behandlas flera aspekter av ett framgångsrikt röntgenptykografiexperiment, där mångsidighet och effektivitet uppnås genom implementeringen av flera strålar.
Utgångspunkten är detaljerad kunskap omnanofabricering, där produktionen av fokuserande röntgenoptik diskuteras. Specifikt utvecklades en direkt-skrivning litografisk process, vars detaljer beskrivs med särskild betoning på elektronstrålitografi vid 50 kV accelerationsspänning på kemiskt semi-amplifierad resist. Denna process är mångsidig och precis, vilket i slutändan möjliggör tillverkningen av Fresnel-zonplattor (FZP).
Avhandlingen berättar sen om tillämpningen av flera FZP:er parallellt, som används för att generera flera röntgenstrålar för att utföra röntgenptykografi. Särskilt undersöks nya utvidgningar av den standardiserade ptychografiska metoden.
Forskningen kring multi-stråle röntgenptykografi inleddes med tätt placerade FZP:er, arrangerade i en linjär matris på samma chip, vilket emulerade och avancerade tidigare forskning inom ämnet och visade att den egenproducerade hårdvaran var redo för mer sofistikerade experiment. Mest anmärkningsvärt var att FZP:erna var så nära som 48 μm från varandra, och upp till tre strålar användes samtidigt, vilket utökade det avbildade synfältet (FOV) med en faktor av tre.
Nästa steg var att introducera en ny uppställning, som främjar konceptet adaptivitet inom ramen för multi-stråle röntgenptykografi tack vare FZP:er som är staplade och motoriserade. Möjligheten att flytta den fokuserande optiken mellan mätningar gav uppställningen en oöverträffad mångsidighet. Optiken behövde inte omdesignas för varje ny iteration av experimentet, provändring eller detektorsinställning. Det räckte med att använda de respektive motorerna och justera avståndet mellan optiken för de nya mätningarna. Nanokristallkluster av guld avbildades med en mängd olika strålavstånd, vilket möjliggjorde avbildning över lika fördelade områden på provet och utökade FOV med en faktor av två.
Framgången med denna setup ledde till dess implementation i mer komplicerade mätningar, vilket slutligen resulterade i demonstrationen av samtidig multi-stråle och multi-slice ptykografi – dessa två hade aldrig varit andvända tillsammans tidigare. Två-lagers prover avbildades, med ett avstånd mellan lagren som varierade från 1400 μm ner till 100 μm, utan kompromiss i upplösning jämfört med enstråle ptykografiska mätningar.
Slutligen kombinerades den fokuserande effekten av FZP:er med reflektion från specialdesignade speglar för att ge en vinklad perspektiv på proverna i ett nytt röntgenstereosynexperiment. Här kunde djupupplösningen på ett flerlagersprov förbättras från flera μm ner till 300 nm, återigen utan kompromiss på upplösningen jämfört med enstråle ptykografi.
För alla dessa tillvägagångssätt till röntgenptykografi finns det en viktig implikation: prover som är större i alla tre dimensioner kan mer lätt adresseras. Faktum är att optimerad multi-stråle röntgenptykografi utnyttjar mer koherent flöde från röntgenkällan, vilket distribuerar fler fotoner på provet och samlar in mer data över ett större synfält under samma experimenttid. Dessutom, tack vare multi-slicing och stereosyn, kan djupupplösningsaspekten adresseras samtidigt.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xvii, 58
Series
TRITA-SCI-FOU ; 2025:05
Keywords
X-ray, Fresnel zone plate, Ptychography, Multi-beam, Multi-slice, Stereo
National Category
Atom and Molecular Physics and Optics Nanotechnology
Research subject
Physics, Optics and Photonics; Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-360505 (URN)978-91-8106-190-1 (ISBN)
Public defence
2025-03-21, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2018-04237Swedish Research Council, 2019-06104
Note
QC 2025-02-27
2025-02-272025-02-262025-03-17Bibliographically approved