kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On determining characteristic length scales in pressure-gradient turbulent boundary layers
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0001-6570-5499
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0001-9833-9560
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0002-1663-3553
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0001-9627-5903
2016 (English)In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 28, no 5, article id 055101Article in journal (Refereed) Published
Abstract [en]

In the present work, we analyze three commonly used methods to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. ["Criteria for assessing experiments in zero pressure gradient boundary layers," Fluid Dyn. Res. 41, 021404 (2009)] and the one by Nickels ["Inner scaling for wall-bounded flows subject to large pressure gradients," J. Fluid Mech. 521, 217-239 (2004)], and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. ["A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the 'outer' peak," Phys. Fluids 23, 041702 (2011)]. The boundary layers developing over the suction and pressure sides of a NACA4412 wing section, extracted from a direct numerical simulation at chord Reynolds number Rec = 400 000, are used as the test case, besides other numerical and experimental data from favorable, zero, and adverse pressure-gradient flat-plate turbulent boundary layers. We find that all the methods produce robust results with mild or moderate pressure gradients, although the composite-profile techniques require data preparation, including initial estimations of fitting parameters and data truncation. Stronger pressure gradients (with a Rotta-Clauser pressure-gradient parameter β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Collapse of intermittency factors obtained from a wide range of pressure-gradient and Re conditions on the wing further highlights the robustness of the diagnostic plot method to determine the boundary layer thickness (equivalent to d99) and the edge velocity in pressure gradient turbulent boundary layers. Published by AIP Publishing.

Place, publisher, year, edition, pages
American Institute of Physics Inc. , 2016. Vol. 28, no 5, article id 055101
Keywords [en]
Atmospheric thermodynamics, Boundary layer flow, Pressure gradient, Reynolds number, Turbulence, Turbulent flow, Velocity, Adverse pressure gradient, Boundary layer thickness, Large pressure gradients, Pressure-gradient parameters, Stream-wise velocities, Turbulent boundary layers, Wall-bounded turbulent flows, Zero-pressure-gradient boundary layers, Boundary layers
National Category
Fluid Mechanics Aerospace Engineering
Identifiers
URN: urn:nbn:se:kth:diva-314001DOI: 10.1063/1.4947532ISI: 000377709500031Scopus ID: 2-s2.0-84969253536OAI: oai:DiVA.org:kth-314001DiVA, id: diva2:1672527
Note

Not duplicate with DiVA 919833

QC 20220620

Available from: 2022-06-20 Created: 2022-06-20 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Vinuesa, RicardoBobke, AlexandraÖrlü, RamisSchlatter, Philipp

Search in DiVA

By author/editor
Vinuesa, RicardoBobke, AlexandraÖrlü, RamisSchlatter, Philipp
By organisation
Linné Flow Center, FLOWSeRC - Swedish e-Science Research CentreMechanics
In the same journal
Physics of fluids
Fluid MechanicsAerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf