Metabolic engineering of Clostridium thermocellum
2022 (English) Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE credits
Student thesis Alternative title
Metabolic engineering av Clostridium thermocellum (Swedish)
Abstract [sv]
Den anaeroba och termofila bakterien Clostridium thermocellum har bra potential för ‘consolidated bioprocessing’ av andra generationens bioetanolproduktion, på grund av dess förmåga att bryta ner och fermentera cellulosa. C. thermocellum har en ovanlig glykolys och har en metabolisk flexibilitet vilket resulterar i bildandet av flertalet olika produkter såsom acetat, format, lactat, aminosyror, vätgas, koldioxid, och etanol. De konkurrerande metaboliska vägarna har tidigare tagits bort och den resulterande stammen har efter evolution erhållit ett etanolutbyte som var 75 % av det maximala teoretiska utbytet. Ytterligare förbättringar i utbyte och titer behöver dock fortfarande göras för att göra denna process ekonomiskt lönsam. Ytterligare optimering av etanolbildning i C. thermocellum kan göras genom metabolisk manipulation av glykolysen. Gen knockouts och introduktion av främmande gener kan användas för att få kunskap och optimera till en mer effektiv etanolbildning. Den metaboliska tekniken gör det möjligt att ändra användningen av kofaktorer, vilket i sin tur kan öka den termodynamiska drivkraften och därför öka etanolutbytet och titern. Detta projekt syftar därför till att studera ett enzym med en potentiell avgörande roll i etanolbildningen i C. thermocellum . Enzymkinetiska mätningar avslöjade aktivitet och inhibering av enzymet. Detta kan spela en roll i C. thermocellum under vissa cellförhållanden.
Abstract [en]
The anerobic thermophilic bacteria Clostridium thermocellum has great potential for consolidated bioprocessing for second-generation bioethanol production, due to its ability to solubilize and ferment cellulose. C. thermocellum uses an atypical glycolysis and has a metabolic flexibility resulting in the formation of a large variety of products such as acetate, formate, lactate, amino acids, hydrogen gas, CO2, and ethanol. The competing product pathways have been previously removed and the resulting strain has been evolutionary engineered to obtain an ethanol yield that was 75% of the maximum theoretical yield. However, further improvements in yield and titer still need to be made to make this process economically viable. Further optimization of ethanol formation in C. thermocellum can be done by metabolic engineering of the glycolysis pathway. Gene knockouts and introducing foreign genes can be used to gain knowledge and optimize to a more efficient ethanol formation pathway. The metabolic engineering allows to alter cofactor usage which in turn can increase thermodynamic driving force and therefore increase the ethanol yield and titer. This project aims therefor to study an enzyme with a potential crucial role in ethanol formation in C. thermocellum . Enzyme kinetic measurements revealed novel activity and inhibition. This could play a role in C. thermocellum under certain conditions.
Place, publisher, year, edition, pages 2022.
Series
TRITA-CBH-GRU ; 2022:173
Keywords [en]
Clostridium thermocellum, glycolysis, second-generation biofuel, consolidated bioprocessing (CBP), bioethanol
Keywords [sv]
Clostridium thermocellum, glykolys, andra generationens biobränsle, konsoliderad bioprocessning (CBP), bioetanol
National Category
Industrial Biotechnology
Identifiers URN: urn:nbn:se:kth:diva-314445 OAI: oai:DiVA.org:kth-314445 DiVA, id: diva2:1672838
Subject / course Biotechnology
Educational program Master of Science - Industrial and Environmental Biotechnology
Supervisors
Examiners
2022-06-202022-06-202022-06-25