kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring the influence of a new CBM family on the thermostability of polysaccharide-degrading enzymes
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [sv]

Glykosidhydrolaser (GH) är hydrolytiska enzymer som katalyserar hydrolysen av glykosidbindningar i komplexa kolhydrater. I detta projekt har ett enzym från GH familj 30, underfamilj 3, karaktäriserats. Inom GH30 är etablerade enzymaktiviteter glukosylceramidas, β-glukosidas, β-xylosidas och endo-β-1,6-glukanas. Tidigare har endast två bakteriella GH30 från underfamilj 3 karaktäriserats, vilka visade aktivitet på hydrolys av β-1,6-glukan, en polysackarid som finns i cellväggen hos vissa svampar och oomyceter. Då enzymet som undersöktes i detta projekt också var ett bakteriellt GH30 från underfamilj 3, antogs det vara ett β-1,6-glukanas.

Syftet med detta projekt var att undersöka om en ny familj av kolhydratbindande moduler, som karaktäriseras i McKee-gruppen, kan förbättra aktiviteten och/eller termostabiliteten hos det förmodade β-1,6-glukanaset. Kolhydratbindande moduler (CBM) är icke-katalytiska proteindomäner som finns hos kolhydrataktiva enzymer i mikroorganismer. Det har tidigare visats att kolhydratbindande moduler kan ge vissa egenskaper till enzymer, såsom hög aktivitet och termostabilitet. Om den kolhydratbindande modul som används i det här projektet kan ge högre aktivitet och/eller termostabilitet till GH30, skulle det vara av intresse för industriella tillämpningar som bioraffinaderi eftersom detta skulle minska kostnaderna för dessa processer. En möjlig tillämpning kan exempelvis därför vara bioraffinaderi med svamp från jordbruksavfall som biomassa.

I denna studie undersöktes genen som kodar för det förmodade β-1,6-glukanaset från akterien Mucilaginibacter rubeus genom överuttryck av rekombinanta former av hela proteinet (GH30 + CBM), och ett trunkerat protein (GH30) utan CBM-domän. Så vitt vi vet är detta det tredje β-1,6-glukanaset från bakterier som någonsin karaktäriserats. Vi har visat att enzymet hade endo-β-1,6 glukanasaktivitet med hög aktivitet på Pustulan. Vi har också visat att GH30 + CBM hade högre katalytisk aktivitet än enbart GH30, samt att GH30 + CBM kunde bryta ned substratet i upp till 12 dagar med ökande hydrolys av produkter, jämfört med GH30 vars aktivitet varade i 7 dagar. Dessutom ökade CBM bindingsaffiniteten av GH30 till substratliganderna hos Pustulan och Scleroglucan. CBM ökade inte märkbart enzymets termostabilitet, och vi drar därför slutsatsen att den primära rollen för CBM i detta multimodulära protein är att öka reaktionshastigheten och den katalytiska effektiviteten. Framtida studier av detta enzym kan fokusera på det ovannämnda bioraffinaderikonceptet, eller undersöka potentialen för enzymer som bryter ned svampcellväggskomponenter för användning i biobekämpningsmedel.

Abstract [en]

Glycoside hydrolases (GHs) are hydrolytic enzymes that catalyse the hydrolysis of glycosidic linkages in complex carbohydrates like polysaccharides. In this project, an enzyme from GH family 30, subfamily 3, has been characterized. For GH30, enzyme activities established are glucosylceramidase, β-glucosidase, β-xylosidase, and endo-β-1,6-glucanase. Previously, only two bacterial GH30s from subfamily 3 had been characterized. These GHs have shown activity on the hydrolysis of β-1,6-glucan, a polysaccharide found in the cell wall of some fungi and oomycetes. Since the enzyme investigated in this project was also a bacterial GH30 from subfamily 3, it was predicted to be a β-1,6-glucanase.

The aim of this project was to investigate if a new family of CBMs being characterized in the McKee group could improve activity and/or thermostability of the predicted β-1,6-glucanase. Carbohydrate binding modules (CBMs) are non-catalytic protein domains that can be found attached to carbohydrate-active enzymes in microorganisms. It has been discovered that CBMs can confer certain features to enzymes, such as high activity and thermostability. If the CBM could transfer higher activity and/or thermostability to the GH30 investigated here, it would be of interest for industrial applications such as biorefinery since this would reduce the cost of the processes. A possible application could therefore be biorefinery using fungi from agricultural waste as biomass.

Thus, in this project, a gene encoding the predicted β-1,6 glucanase from the bacterium Mucilaginibacter rubeus was investigated by over-expression of recombinant forms of the fulllength protein (GH30 + CBM) and a truncated protein (GH30) without the CBM domain. As far as we know, this is the third β-1,6 glucanase from bacteria ever to be characterized. We found that this enzyme had endo-β-1,6 glucanase activity with high activity on Pustulan. We also found that GH30 + CBM had higher catalytic activity than GH30 alone, and GH30 + CBM could degrade the substrate for up to 12 days with increasing hydrolysis of products, compared to GH30 for which the activity only lasted for 7 days. Furthermore, CBM appended to GH30 increased the binding affinity to the substrate ligands of Pustulan and Scleroglucan. However, CBM appended to GH30 did not increase enzyme thermostability to any noticeable effect, so we conclude that the primary role of the CBM in this multi-modular protein is to increase reaction rate and catalytic efficiency. Future explorations of this enzyme could focus on the aforementioned biorefinery concept or investigate the potential for enzymesdegrading fungal cell wall components to be used in bio-pesticides.

Place, publisher, year, edition, pages
2022.
Series
TRITA-CBH-GRU ; 2022:200
Keywords [en]
Glycoside Hydrolases, Carbohydrate Binding Modules, thermostability, β-glucanase, cell wall degradation.
National Category
Pharmaceutical and Medical Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-314594OAI: oai:DiVA.org:kth-314594DiVA, id: diva2:1673978
Subject / course
Biotechnology
Educational program
Master of Science - Medical Biotechnology
Supervisors
Examiners
Available from: 2022-06-21 Created: 2022-06-21 Last updated: 2025-02-17

Open Access in DiVA

No full text in DiVA

By organisation
Glycoscience
Pharmaceutical and Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 228 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf