kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Disturbance growth on a NACA0008 wing subjected to free stream turbulence
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-1766-5557
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0001-6343-7507
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0002-5913-5431
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0001-7864-3071
2022 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 944, article id A44Article in journal (Refereed) Published
Abstract [en]

The stability of an incompressible boundary layer flow over a wing in the presence of free stream turbulence (FST) has been investigated by means of direct numerical simulations and compared with the linearised boundary layer equations. Four different. FST conditions have been considered, which are characterised by their turbulence intensity levels and length scales. In all cases the perturbed flow develops into elongated disturbances of high and low streamwise velocity inside the boundary layer, where their spacing has been found to be strongly dependent on the scales of the incoming free stream vorticity. The breakdown of these streaks into turbulent spots from local secondary instabilities is also observed, presenting the same development as the ones reported in flat plate experiments. The disturbance growth, characterised by its root mean squares value, is found to depend not only on the turbulence level, but also on the FST length scales. Particularly, higher disturbance growth is observed for our cases with larger length scales. This behaviour is attributed to the preferred wavenumbers that can exhibit maximum transient growth. We study this boundary layer preference by projection of the flow fields at the leading edge onto optimal disturbances. Our results demonstrate that optimal disturbance growth is the main cause of growth of disturbances on the wing boundary layer.

Place, publisher, year, edition, pages
Cambridge University Press (CUP) , 2022. Vol. 944, article id A44
Keywords [en]
boundary layer receptivity, shear-flow instability, transition to turbulence
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-315686DOI: 10.1017/jfm.2022.506ISI: 000820742400001Scopus ID: 2-s2.0-85133844279OAI: oai:DiVA.org:kth-315686DiVA, id: diva2:1683412
Note

QC 20220715

Available from: 2022-07-15 Created: 2022-07-15 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Numerical investigations of bypass transition and its control
Open this publication in new window or tab >>Numerical investigations of bypass transition and its control
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis deals with the laminar-turbulent transition process in boundary layers induced by free-stream turbulence (FST), commonly referred to as bypass transition. The investigation has been carried out using direct numerical simulations (DNS), stability analysis, and control theory. The various aspects of bypass transition considered in this work can be grouped into two categories: open and closed-loop dynamics. 

The open-loop dynamics span from the inception to the breakdown of instabilities, driving the flow from a laminar to a turbulent state. A broader understanding of this process could inspire new and more accurate models for transition prediction, which is of great interest in many engineering applications. In this context, stability theory provides an excellent framework to study the pre-transitional flow. This work has confirmed the relevance of optimal disturbance theory in realistic flow conditions, and how its inexpensive computations can provide valuable information regarding the most 'dangerous' disturbances in terms of their amplification. The key role of streak secondary instabilities in bypass transition has also been studied. They constitute the main cause of transition in a flat plate simulation considering realistic wind tunnel conditions. By comparing the secondary instabilities leading to breakdown in different geometries and FST compositions, it has been found that their hosting streaks feature similar aspect ratios, regardless of their streamwise position. An explanation for this apparent size preference has been provided based on optimal growth and energy propagation due to non-linear interactions.

The closed-loop dynamics address how new inputs can steer the system to a desired state based on operational information extracted from the system. In boundary layers, delaying transition is an attractive idea for energy savings due to the lower drag associated with a laminar state. This work explores this possibility with the use of control theory in reduced-order models constructed solely on input/output data from DNS. The methods are restricted to being equally feasible in experiments. Here, streak attenuation is successfully achieved based only on wall measurements and wall localised actuation. It has been shown that the dissimilar performances regarding transition delay are connected to the controller's capabilities of acting on breaking streaks.

Abstract [sv]

Denna avhandling behandlar den laminära-turbulenta övergångsprocessen i gränsskikt inducerad av friströmsturbulens (FST), vanligen kallad bypass-transition. Studien har genomförts med hjälp av direkta numeriska simuleringar (DNS), stabilitetsanalys och reglerteknik. Två typer av bypass-transition beaktas, omslagsprocessen utan reglerteknisk påverkan och med användning av reglerteknik. 

Omslagsprocessen utan användning av reglerteknik handlar till stor del om hur instabiliteter växer och bryter ner strömningen till turbulens.  En bredare förståelse av denna process kan resultera i bättre metoder för att förutsäga laminärt-turbulent omslag, vilket är av stort intresse i många tekniska tillämpningar. I detta sammanhang ger stabilitetsteori ett utmärkt ramverk för att studera strömningen före omslaget sker. Vårt arbete har bekräftat relevansen av sk ``optimal störningsteori'' i realistiska situationer, och hur de kan ge värdefull information om de mest ``farliga'' störningarna. Nyckelrollen av sekundärinstabiliteter har också studerats. De utgör huvudorsaken till övergången till turbulens för strömningen över vingar och plana plattor där strömningen i friströmmen innehåller tillräckligt med turbulens. Genom att jämföra sekundärinstabiliteterna som leder till sammanbrott i olika geometrier har det visat sig att långa strukturer av hög- och låghastighetsstråk med liknande förhållande mellan spännvidds och vertikal skalor är associerade med sammanbrott till turbulens. En förklaring för denna storlekspreferens baseras på optimal tillväxt tillsammans med icke-linjär interaktion mellan stråk med olika spännvidds skalor. 

Med användning av reglerteknik adresserar vi hur aktuatorer kan styra systemet till ett önskat tillstånd baserat på information som via mätningar extraherats från systemet. I gränsskiktströmning är man intresserad av att fördröja övergång från laminärt till turbulent tillstånd för att åstadkomma energibesparingar genom det lägre motståndet ett laminärt tillstånd har. Detta arbete undersöker möjligheten att använda reglerteknik tillsammans med enkla modeller baserade på analys av på in/utdata från direktsimuleringarna. Metoderna är beskaffade så att de skulle kunna anvädas i en experimentellt. Vi dämpar de stråkstrukturer som finns i gränsskiktsströmningen framgångsrikt. Fördröjningen av laminär-turbulent omslag är kopplade till möjligheten att begränsa amplituden på de stråk som har störst sannolikhet att bryta samman till turbulens via sekundärinstabiliteter. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 44
Series
TRITA-SCI-FOU ; 2024:27
Keywords
boundary layers, stability, laminar-turbulent transition, reduced order model, flow control, direct numerical simulations, gränsskikt, stabilitet, laminär-turbulent omslag, modellreduktion, strömningskontroll, direkt numerisk simulering
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-346610 (URN)978-91-8040-948-3 (ISBN)
Public defence
2024-06-14, U1, Brinellvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2024-05-21 Created: 2024-05-20 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Alarcón, José FaúndezMorra, PierluigiHanifi, ArdeshirHenningson, Dan S.

Search in DiVA

By author/editor
Alarcón, José FaúndezMorra, PierluigiHanifi, ArdeshirHenningson, Dan S.
By organisation
Fluid Mechanics and Engineering AcousticsLinné Flow Center, FLOWEngineering Mechanics
In the same journal
Journal of Fluid Mechanics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 506 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf