Open this publication in new window or tab >>2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
To facilitate the shift from fossil to renewable energy sources, energy storage is needed to cope with the intermittent nature of technologies such as solar, wind, and wave power. One storage alternative is battery-based stationary energy storage. There are many battery types to choose from, but Nickel Metal Hydride (NiMH) is a type that is especially well suited. These batteries have a high energy density, a large temperature operating window and are a safe alternative for large scale energy storage.
In this thesis, the behavior of the NiMH battery is studied with the aim to develop a dynamic battery model, a model that is capable of reproducing the battery voltage and pressure, also for dynamic usage. Such a model can be used to facilitate development of NiMH batteries, improvement of the algorithms used in the Battery Management System (BMS), quality control, and dimensioning of energy storage systems. These improvements can lead to stationary energy storage with a higher efficiency and longer usable lifetime.
To increase the understanding of the battery function, deeper study was carried out of two behaviors that are typical for the NiMH battery and are deemed to have a large impact on the battery: Open circuit voltage (OCV) hysteresis and the battery gas phase behavior. The OCV hysteresis complicates modelling because it causes the battery rest voltage at a certain degree of charge to depend on the charge/discharge path taken to get there. OCV hysteresis is not noticeable for all batteries, and it is especially prominent for the NiMH battery. The gas phase in the NiMH battery is active since the electrolyte is water based and the voltage window during operation causes oxygen evolution at the positive electrode. The oxygen is then recombined into water at the negative electrode. The amount of hydrogen in the gas phase varies over a cycle due to the the dependence on temperature and state of charge of the hydrogen equilibrium pressure over the negative metal hydride electrode.
Two models were developed separately to study these behaviors. The models showed good qualitative reproduction capabilities. The hysteresis phenomenon was also studied using structural analysis methods. Differences were identified in the material structure between two samples of the positive electrode material at the same state of charge but different hysteresis states. These differences were found in both the bulk and the surface region of the particles. The differences in bulk were related to degree of disorder and the differences in the surface region to inhomogeneity in Li distribution in the cobalt oxyhydroxide layer. The gas composition was studied using mass spectrometry. The gas phase was mostly composed of nitrogen, but hydrogen was responsible for the majority of the pressure changes of the battery during a charge/discharge cycle. Oxygen could be detected at the end of charge, where it is produced due to high voltage on the positive electrode.
Finally, the two models were added to a P2D-model. This model type is commonly used to simulate battery behavior, and is based on electrochemical theory with approximations used for the porous electrode behavior. The spacial distribution is modeled in one dimension with an additional dimension added locally to simulate intra particle diffusion. The combined model showed that the behavior seen from a NiMH during dynamic usage could be recreated qualitatively through adding OCV hysteresis and the gas phase behavior to this standard model type.
Abstract [sv]
För att underlätta skiftet från fossilbaserade till förnyelsebara energikällor behövs energilagring för att hantera den intermittenta produktionen hos tekniker som sol- vind och vågkraft. Ett alternativ är stationär energilagring med hjälp av batterier. Det finns många batterityper att välja på, men Nickel Metallhydrid batterier (NiMH) är särskilt lämpade. De har bra energidensitet, stort temperaturfönster och är ett säkert alternativ för storskalig energilagring.
I den här avhandlingen studeras NiMH batteriets beteende med målet att ta fram en dynamisk batterimodell, en modell som är kapabel att reproducera batteriets spänning och tryckbeteende även för dynamiska körcykler. En sådan modell kan avvändas till att underlätta utveckling av NiMH batterier, förbättra algoritmerna i batteriernas styrsystem, kvalitetskontroll och dimensionering av system. I förlängningen innebär det stationära energilager med högre verkningsgrad och längre livslängd.
För att öka förståelsen för hur batteriet fungerar så har fördjupning gjorts i två beteenden som är typiska för NiMH batteriet och ansågs ha särskilt stor inverkan: Öppetkretsspänningshysteresen och beteendet hos batteriets gasfas. Öppetkretsspänningshysteresen försvårar modellering genom att batteriets vilospänning vid en viss laddningsgrad beror på hur det laddats och laddats ur för att komma dit. Öppetkretsspänningshysteres är inte någonting som är märkbart hos alla batterityper, men den är särskilt kraftig hos NiMH. Gasfasen hos batteriet är aktiv eftersom elektrolyten är vattenbaserad och dess spänningsfönster vid drift orsakar syrgasutveckling på den positiva elektroden. Syrgasen återbildas sedan till vatten på den negativa elektroden. Mängden vätgas i gasfasen förändras pågrund av hur jämviktstrycket av vätgas över den negativa vätelagringselektroden beror av laddningsgrad och temperatur.
I arbetet så utvecklades två modeller separat för att beskriva dessa två beteenden. Modellerna visade upp en god kvalitativ överenstämmelse. Hystersfenomenet studerades med hjälp av strukturkemiska metoder, och skillnader identifierades i materialstrukturen mellan positivt elektrodmaterial vid samma laddningsrad men olika hysterestillstånd. Dessa skillnader återfanns både i bulken och ytregionen i de aktiva partiklarna. Skillnaderna i bulken härrörde från graden av oordning, och skillnaderna i ytregionen i ojämnhet i Li distributionen i koboltoxyhydroxidlagret. Gassammansättningen studerades med hjälp av masspektrometri. Gasfasen utgjordes till största delen av kväve, men vätgas var ansvarig för majoriteten av tryckförändringen hos batteriet under en laddcykel. Syrgas kunde mätas vid slutet av laddning, där det produceras till följd av höga spänningar på den positiva elektroden.
Slutligen så adderades de två utvecklade modellerna till en så kallad P2D modell. Denna modelltyp är vanlig för att simulera batterier och bygger på elektrokemisk teori med uttryck för att approximera beteendet hos de porösa elektroderna. Modellen är byggd i en rumsdimension, med en ytterligare dimmension för att simulera diffusionen i de aktiva partiklarna som räknas ut lokalt. Den sammanslagna modellen visade att de beteenden som ses hos ett NiMH batteri vid blandad drift kunde återskapas kvalitativt genom att ta öppetkretsspänningshysteresen och gasfasbeteendena i beaktan.
Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2023. p. 75
Series
TRITA-CBH-FOU ; 2023:51
Keywords
NiMH batteries, Battery Modeling, OCV hysteresis, NiMH gas phase, P2D model, NiMH batterier, Batterimodellering, OCV hysteres, NiMH gasfas, P2D modell
National Category
Other Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-338147 (URN)978-91-8040-742-7 (ISBN)
Public defence
2023-11-22, Kollegiesalen https://kth-se.zoom.us/meeting/register/u5AqcuGgpzwpHNGjZ3gdaRMKu3gq6T0J0aQc, Brinellvägen 8, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ID16-0111
Note
QC 20231027
2023-10-272023-10-262023-10-31Bibliographically approved