kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis and spectroscopic characterization of NiII coordination network:: Poly-[tris(µ4-Benzene-1,4-dicarboxylato)-tetrakis(µ1-dimethylformamide-κ1O)-trinickel(II)] as material for lithium ion batteries
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. UMSA Univ Mayor San Andres, IIQ Chem Res Inst, Dept Inorgan Chem & Mat Sci Adv Mat, La Paz, Bolivia..ORCID iD: 0000-0001-5050-6366
UMSA Univ Mayor San Andres, IIQ Chem Res Inst, Dept Inorgan Chem & Mat Sci Adv Mat, La Paz, Bolivia..
UMSA Univ Mayor San Andres, IIQ Chem Res Inst, Dept Inorgan Chem & Mat Sci Adv Mat, La Paz, Bolivia..
Res Inst Sweden, Div Safety & Transport Elect, RISE, SE-50462 Borås, Sweden..
Show others and affiliations
2022 (English)In: Journal of Molecular Structure, ISSN 0022-2860, E-ISSN 1872-8014, Vol. 1265, p. 133316-, article id 133316Article in journal (Refereed) Published
Abstract [en]

The compound Ni3(C8H4O4)3(C3H7NO)3, poly-[tris(µ4-Benzene-1,4-dicarboxylato)-tetrakis(µ1-dimethylformamide-κ1O)-trinickel(II)], was synthesized by the solvothermal method prepared via reaction between NiCl2•6H2O and terephthalic acid using N,N-dimethylformamide (DMF) as solvent. The structure was characterized by powder X-ray diffraction and infrared spectroscopy analyses. The electrochemical properties as a potential active material in lithium-ion batteries were characterized by electrochemical impedance spectroscopy and galvanostatic charge-discharge curves in a battery half-cell.

The characterization results show that the coordination network contains one independent structure in the asymmetric unit. It is constructed from Ni2+ ions, terephthalate bridges and in-situ-generated DMF ligands, forming two similar two-dimensional (2D) layer structures. These similar 2D layers are in an alternating arrangement and are linked with each other by dense H—H interactions (45%) to generate a three-dimensional (3D) supramolecular framework with ordered and disordered DMF molecules.

The electrochemical measurements, conducted in the potential range of 0.5–3.5 V vs Li/Li+, show that Ni3(C8H4O4)3(C3H7NO)4 has good electrochemical properties and can work as anode in lithium-ion batteries. The material presents an initial specific capacity of ∼420 mAh g−1, which drops during consecutive scans but stabilizes at ∼50 mAh g−1. However, due to the wide potential range there are indications of a gradual collapse of the structure. The electrochemical impedance spectroscopy shows an increase of charge transfer resistance from 24 to 1190 Ohms after cycling likely due to this collapse.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 1265, p. 133316-, article id 133316
Keywords [en]
Structure, Metal coordination networks, Materials, Lithium-ion batteries
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-315713DOI: 10.1016/j.molstruc.2022.133316ISI: 000814696400004Scopus ID: 2-s2.0-85131459127OAI: oai:DiVA.org:kth-315713DiVA, id: diva2:1683674
Note

QC 20220718

Available from: 2022-07-18 Created: 2022-07-18 Last updated: 2022-09-12Bibliographically approved
In thesis
1. Hybrid materials for lithium-ion batteries
Open this publication in new window or tab >>Hybrid materials for lithium-ion batteries
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The Lithium‐ion batteries are the most important power source for electronic devices as electronics, storage and the different electric vehicles. The research and development of new materials for different applications has increased, especially in the development of materials with better electrochemical properties (Specific capacity, rate capability, high energy density and cyclability). Inorganic materials such as LiFePO4, LiMn2O4 and organic materials such as Li4C6O6, quinones and anthraquinones, polyaniline (PANI) and others have been extensively studied. Improvement of the electrochemical properties involve different aspects as: control in the particle size of the materials, doping with other elements and the combination of the different properties of the organic an inorganic materials. The development of hybrids materials with improved electrochemical properties need a combination between of inorganic and organic structures. This type of hybrids materials are a very attractive option for the development of advanced materials. For the design of this type of hybrid materials it is necessary to form interactions between the inorganic and organic part (supramolecular chemistry). This opens up for using an immense amount of organic materials such as conductive polymers and PANI (Polyaniline) are attractive alternatives in the development of hybrid materials due to their excellent electronic conductivity. Other attractive types of hybrid materials are compounds based on metal-organic frameworks (MOF), coordination polymers (CP) and coordination networks (CN).

This thesis work is focused in the synthesis, structural characterization and electrochemical characterization of two groups of hybrid materials: 

1) LiFePO4-PANI synthetized by different methods.

2) Metal-organic compounds M-BDC-DMF with M=Ni2+, Fe2+, C8H4O2=Terephthalate=BDC=Benzene dicarboxylate, DMF=N,N-dimethylformamide.

The materials were synthesized by chemical oxidation methods combined with thermal treatment (LiFePO4-PANI-Li hybrid powder) and by solvothermal methods (M-BDC-DMF). The materials were characterized by SCXRD, PXRD, FTIR, SEM and electrochemical methods and the electrochemical characterization was carried out using CV, EIS and galvanostatics methods. 

The specific capacities of PANI was 95 mAh/g, of LiFePO4 was 120 mAh/g and of LiFePO4-PANI was 145 mAh/g at 0.1C. At 2C the capacity of LiFePO4 was 70 mAh/g and LiFePO4-PANI was 100 mAh/g. The specific capacities of Ni3(C8H4O4)3(C3H7NO)4 is ~50 mAh/g and Fe-BDC-DMF was ~175 mAh/g. 

The work has shown that PANI can improve the performance of LFP also at higher discharges rates. For M-BDC-DMF stability seems to be an issue which should be studied more in the future.

Abstract [sv]

Litiumjonbatterier är den viktigaste kraftkällan för elektroniska enheter som elektronik, lagring och elfordon. Forskningen och utvecklingen av nya material för olika applikationer har ökat, särskilt i utvecklingen av material med bättre elektrokemiska egenskaper (specifik kapacitet, hastighetsförmåga, hög energitäthet och cyklingstalighet). Oorganiska material som LiFePO4, LiMn2O4 och organiska material som Li4C6O6, kinoner och antrakinoner, polyanilin (PANI) och andra har studerats omfattande. Förbättring av de elektrokemiska egenskaperna involverar olika aspekter såsom: kontroll av materialens partikelstorlek, dopning med andra grundämnen och kombinationen av de olika egenskaperna hos de organiska och oorganiska materialen. Utvecklingen av hybridmaterial med förbättrade elektrokemiska egenskaper kräver en kombination av oorganiska och organiska strukturer. Denna typ av hybridmaterial är ett mycket attraktivt alternativ för utveckling av avancerade material. För utformningen av denna typ av hybridmaterial är det nödvändigt att bilda interaktioner mellan den oorganiska och organiska delen (supramolekylär kemi). Detta öppnar upp för att använda en enorm mängd organiska material som ledande polymerer och PANI (Polyanilin) är attraktiva alternativ i utvecklingen av hybridmaterial på grund av deras utmärkta elektroniska ledningsförmåga. Andra attraktiva typer av hybridmaterial är föreningar baserade på metallorganiska ramverk (MOF), koordinationspolymerer (CP) och koordinationsnätverk (CN).

Detta examensarbete är fokuserat på syntes, strukturell karakterisering och elektrokemisk karakterisering av två grupper av hybridmaterial: 1. LiFePO4-PANI syntetiserad med olika metoder. 2. Metallorganiska föreningar M-BDC-DMF med M=Ni2+, Fe2+, C8H4O2=Tereftalat=BDC=Bensendikarboxylat, DMF=N,N-dimetylformamid.

Materialen syntetiserades genom kemiska oxidationsmetoder kombinerade med termisk behandling (LiFePO4-PANI-Li hybridpulver) och genom solvotermiska metoder (M-BDCDMF). Materialen karakteriserades med SCXRD, PXRD, FTIR, SEM och den elektrokemiska karakteriseringen utfördes med CV, EIS och galvanostatiska metoder. Den specifika kapaciteten för PANI var 95 mAh/g, för LiFePO4, 120 mAh/g och för LiFePO4- PANI, 145 mAh/g vid 0,1 C. Vid 2C var kapaciteten för LiFePO4 70 mAh/g och LiFePO4-PANI, 100 mAh/g. Den specifika kapaciteten för Ni3(C8H4O4)3(C3H7NO)4 är ~50 mAh/g och Fe-BDCDMF, ~175 mAh/g.

Arbetet har visat att PANI kan förbättra prestandan hos LFP även vid högre hastigheter. För MBDC-DMF verkar stabilitet vara en fråga som bör studeras mer i framtiden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 83
Series
TRITA-CBH-FOU ; 2022:43
Keywords
Hybrid battery materials, conducting polymer composite, metal organic compounds, lithium-ion batteries.
National Category
Chemical Engineering
Research subject
Chemistry; Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-317479 (URN)978-91-8040-333-7 (ISBN)
Public defence
2022-10-18, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 2022-09-21

Available from: 2022-09-21 Created: 2022-09-12 Last updated: 2022-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ajpi Condori, CesarioLindbergh, Göran

Search in DiVA

By author/editor
Ajpi Condori, CesarioLindbergh, Göran
By organisation
Applied Electrochemistry
In the same journal
Journal of Molecular Structure
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 147 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf