kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Conservative Discontinuous Cut Finite Element Methods: Convection-Diffusion Problems in Evolving Bulk-Interface Domains
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0009-0005-0537-9317
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Konservativa skurna finita elementmetoder: konvektions-diffusionsproblem i tidsberoende domäner (Swedish)
Abstract [en]

This work entails studying unfitted finite element discretizations for convection-diffusion equations in domains that evolve in time. In particular, these partial differential equations model the evolution of the concentration of soluble surfactants in bulk-interface domains. The work in this thesis docuses on developing numerical methods which conserve the modeled physical quantities. In this work, we propose cut finite element discretizations based on the Discontinuous Galerkin framework which are both locally and globally conservative. Local conservation is achieved on so-called macro elements, and we investigate macro element partitioning of the mesh for both stationary and time-dependent domains. Additionally, we develop globally conservative methods for time-dependent problems. We analyze the proposed methods by studying the convergence of the L2-error with respect to mesh size, condition numbers of the associated linear system matrices, and the conservation error. In numerical experiments for time-dependent problems, we show that the proposed methods have optimal convergence and that the developed macro element stabilization for time-dependent problems leads to increased accuracy while retaining stable condition numbers. Moreover, the measured conservation errors verify the global conservation of the proposed methods.

Abstract [sv]

Detta arbete undersöker diskretiseringar av partiella differentialekvationer i tidsberoende domäner där beräkningsnätet inte behöver anpassas till domänens rörelse. I synnerhet betraktar vi partiella differentalekvationer som modellerar koncentrationen av lösliga ytaktiva ämnen, och skurna finita elementmetoder baserade på den Diskontinuerliga Galerkinmetoden som bevarar de modellerade fysikaliska storheterna. I detta arbete föreslås diskretiseringar som är både lokalt och globalt konservativa. Lokal konservering uppnås i så kallade makroelement, och vi undersöker makroelementpartitionering för både stationära och tidsberoende domäner. Även globalt konservativa metoder utvecklas för tidsberoende problem. De föreslagna metoderna analyseras med hjälp av numeriska exempel. Vi studerar konvergensen av L2-felet med avseende på nätstorlek, konditionstalen för de linjära systemmatriserna samt konserveringsfelet. Metoderna uppvisar optimal konvergens och makroelementstabilisering som utvecklas för tidsberoende problem leder till ökad noggrannhet, samtidigt som konditionstalen förblir stabila. Dessutom veritifierar de uppmättta konserveringsfelen den globala konserveringen hos de föreslagna metoderna.

Place, publisher, year, edition, pages
2022. , p. 93
Series
TRITA-SCI-GRU ; 2022:182
Keywords [en]
numerical analysis, mathematical modeling, convection-diffusion equation, partial differential equation, unfitted method, CutFEM, finite element method, discontinuous Galerkin method
Keywords [sv]
numerisk analys, matematisk modellering, konvektions-diffusionsekvationer, partiella differentialekvationer, finita elementmetoden, diskontinuerliga Galerkinmetoden
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-315784OAI: oai:DiVA.org:kth-315784DiVA, id: diva2:1683863
Subject / course
Scientific Computing
Educational program
Master of Science - Computer Simulation for Science and Engineering
Supervisors
Examiners
Available from: 2022-07-19 Created: 2022-07-19 Last updated: 2024-08-26Bibliographically approved

Open Access in DiVA

fulltext(5849 kB)455 downloads
File information
File name FULLTEXT01.pdfFile size 5849 kBChecksum SHA-512
2ad59a755230aaacebad6fc098003871c86dadc39ac32221b27ac5a81642807116d5945beb25137164db79c4783ccdc02396922e51da1365a67419dea55a6b7d
Type fulltextMimetype application/pdf

Authority records

Myrbäck, Sebastian

Search in DiVA

By author/editor
Myrbäck, Sebastian
By organisation
Mathematics (Dept.)
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 455 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1331 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf