kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Subharmonic eigenvalue orbits in the spectrum of pulsating Poiseuille flow
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0002-5913-5431
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0001-7864-3071
2022 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 945, article id A11Article in journal (Refereed) Published
Abstract [en]

Spectral degeneracies where eigenvalues and eigenvectors simultaneously coalesce, also known as exceptional points, are a natural consequence of the strong non-normality of the Orr-Sommerfeld operator describing the evolution of infinitesimal disturbances in parallel shear flows. While the resonances associated with these points give rise to algebraic growth, the development of non-modal stability theory exploiting specific perturbation structures with much larger potential for transient energy growth has led to waning interest in spectral degeneracies. The appearance of subharmonic eigenvalue orbits, recently discovered in the periodic spectrum of pulsating Poiseuille flow, can be traced back to the coalescence of eigenvalues at exceptional points. We present a thorough analysis of the spectral properties of the linear operator to identify exceptional points and accurately map the prevalence of subharmonic eigenvalue orbits for a large range of pulsation amplitudes and frequencies. This information is then combined with solutions of the linear initial value problem to analyse the impact of the appearance of these orbits on the temporal evolution of linear disturbances in pulsating Poiseuille flow. The periodic amplification phases are shown to be heralded by repeated non-normal growth bursts that are intensified by the formation of subharmonic orbits involving the leading eigenvalues. These bursts are associated with the change of alignment of the perturbation from the decaying towards the amplified branch of the subharmonic eigenvalue orbits in a so-called branch transition process.

Place, publisher, year, edition, pages
Cambridge University Press (CUP) , 2022. Vol. 945, article id A11
Keywords [en]
shear-flow instability, channel flow
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-315884DOI: 10.1017/jfm.2022.515ISI: 000824683700001Scopus ID: 2-s2.0-85134879610OAI: oai:DiVA.org:kth-315884DiVA, id: diva2:1684827
Note

QC 20220728

Available from: 2022-07-28 Created: 2022-07-28 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Linear and non-linear dynamics of non-autonomous flows
Open this publication in new window or tab >>Linear and non-linear dynamics of non-autonomous flows
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fluid flows subject to time-dependent external forces or boundary conditions are ubiquitous in biology and technical applications. Whether one considers birds flying by flapping their wings or the gust response of wind turbines, the flow is non-autonomous. This thesis investigates the influence of external time-dependence on the non-linear evolution of fluid flows, as well as on the linear response to small disturbances that determines their stability. 

    For the analysis of the time-periodic pulsatile flow through toroidal pipes, an iterative fixed-point solver in frequency space is developed and validated to obtain the baseflows. The method is used to explore the effect of pulsations on the flow through tori with relevant curvatures. Using the Floquet framework, the linear stability of the flow close to criticality is investigated, revealing strong sensitivity to pulsations that are mostly stabilising.

    Considering the local stability of pulsating plane Poiseuille flow, the eigenpairs of the linear operator are tracked over time producing subharmonic eigenvalue orbits. Their appearance is traced to spectral degeneracies of the operator, leading to the transition of the harmonic disturbance between eigenvalue trajectories involving non-modal growth bursts. The same flow case is then used to assess the potential of the optimally time-dependent (OTD) framework for transient linear stability analysis of flows with arbitrary time-dependence using a localised linear/non-linear implementation aimed at open flows.

    This framework is then used to track the linear stability of laminar separation bubbles on pitching wing sections. On a natural laminar flow airfoil, the global mode corresponding to an absolute local instability is identified at the rear of the bubble, causing its breakdown to turbulence. In the case of an airfoil undergoing dynamic stall, the OTD modes reveal the main instability on the shear layer of the bubble as well as growth bursts correlated with vortex shedding.

    The influence of low-amplitude free-stream disturbances on the onset of dynamic stall is investigated and the onset of intermittent vortex shedding during the bubble bursting is documented. The repeated appearance of the phenomenon in a set of flow realisations confirmed its statistical relevance. The Proper Orthogonal Decomposition framework is extended to include time. This allows for the objective extraction of transient structures from data.

Abstract [sv]

Flöden som är föremål för tidsberoende yttre krafter eller randvillkor är vanligt förekommande inom biologi och tekniska tillämpningar. Oavsett om man tittar på fåglar som flyger genom att flaxa med vingarna eller vindturbiners respons på en vindil, så är flödet icke-autonomt. Denna avhandling undersöker inflytandet av externt tidsberoende på den icke-linjära flödesutvecklingen, liksom på den linjära responsen på små störningar som bestämmer dess stabilitet.

    För analysen av tids-periodiska pulserande flöden genom toroidala rör utvecklas och valideras en iterativ fixpunktlösare i frekvensrummet för att beräkna basflödena. Metoden används för att utforska effekten av pulsationer på flödet genom rör med relevanta krökningar. Genom att använda Floquet-ramverket undersöks flödets linjära stabilitet nära de kritiska parametervärden som visar en stark känslighet för pulsationer som främst är stabiliserande. 

    I den lokala stabiliteten av pulserande plan Poiseuille strömning följs egenvärden hos den linjära operatorn över tiden där subharmoniska egenvärdes-trajektorier uppstår. Deras ursprung spåras till spektrala degenereringar av operatorn, vilket leder till övergångar av den harmoniska störningen mellan egenvärdestrajektorierna som involverar icke-modal tillväxt. Samma strömings-fallet används sedan för att bedöma potentialen hos optimalt tidsberoende (OTD) ramverket för transient linjär stabilitetsanalys av flöden med godtyckligt tidsberoende med hjälp av en lokaliserad linjär/icke-linjär implementation anpassad till öppna flöden.

    Detta ramverk används sedan för att följa den linjära stabiliteten hos laminära separationsbubblor på oscilerande vingar. På en vingprofil identifieras den globala moden som motsvarar en absolut lokal instabilitet vid bubblans ände, vilket orsakar dess sammanbrott till turbulens. I en annan vinge som genomgår dynamisk stall avslöjar OTD-moderna den viktigaste skärskiktsinstabiliteten i bubblan samt tillväxt som korrelerar med virvelavlösning.

    Inflytandet av låg fri-strömsturbulens på starten på dynamisk stall undersöks och uppträdandet av intermitent virvelavlösning under bubblans sammanbrott dokumenteras. Den upprepade förekomsten av fenomenet i olika simuleringar av samma flödesfall bekräftar dess statistiska relevans. Proper Orthogonal Decomposition utökas genom att inkludera tiden. Analysen möjliggör att extrahera transienta strukturer från data på ett objektivt sätt.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. 105
Series
TRITA-SCI-FOU ; 2023:22
Keywords
Time-dependent flows, linear stability, non-linear dynamics, Floquet analysis, optimally time-dependent modes
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-326740 (URN)978-91-8040-574-4 (ISBN)
Public defence
2023-06-02, Kollegiesalen, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, European Research Council, 694452-TRANSEP-ERC-2015-AdG
Note

QC 230510

Available from: 2023-05-10 Created: 2023-05-10 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Kern, J. SimonHanifi, ArdeshirHenningson, Dan S.

Search in DiVA

By author/editor
Kern, J. SimonHanifi, ArdeshirHenningson, Dan S.
By organisation
Engineering MechanicsLinné Flow Center, FLOWFluid Mechanics and Engineering Acoustics
In the same journal
Journal of Fluid Mechanics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 298 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf