Open this publication in new window or tab >>2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Tid, rum och kontroll: djupinlärningsapplikationer för turbulenta flöden
Abstract [en]
In the present thesis, the application of deep learning and deep reinforcement learning to turbulent-flow simulations is investigated. Deep-learning models are trained to perform temporal and spatial predictions, while deep reinforcement learning is applied to a flow-control problem, namely the reduction of drag in an open channel flow. Long short-term memory (LSTM, Hochreiter & Schmidhuber 1997) networks and Koopman non-linear forcing (KNF) models are optimized to perform temporal predictions in two reduced-order-models of turbulence, namely the nine-equations model proposed by Moehlis et al. (2004) and a truncated proper orthogonal decomposition (POD) of a minimal channel flow (Jiménez & Moin 1991). In the first application, both models are able to produce accurate short-term predictions. Furthermore, the predicted system trajectories are statistically correct. KNF models outperform LSTM networks in short-term predictions, with a much lower training computational cost. In the second task, only LSTMs can be trained successfully, predicting trajectories that are statistically accurate. Spatial predictions are performed in two turbulent flows: an open channel flow and a boundary-layer flow. Fully-convolutional networks (FCNs) are used to predict two-dimensional velocity-fluctuation fields at a given wall-normal location using wall measurements (and vice versa). Thanks to the non-linear nature of these models, they provide a better reconstruction performance than optimal linear methods like extended POD (Borée 2003). Finally, we show the potential of deep reinforcement learning in discovering new control strategies for turbulent flows. By framing the fluid-dynamics problem as a multi-agent reinforcement-learning environment and by training the agents using a location-invariant deep deterministic policy-gradient (DDPG) algorithm, we are able to learn a control strategy that achieves a remarkable 30% drag reduction, improving over existing strategies by about 10 percentage points.
Abstract [sv]
I den förinställda avhandlingen undersöks tillämpningen av djupinlärning och djupförstärkningsinlärning på turbulenta flödessimuleringar. Modeller för djupinlärning tränas för att utföra tids- och rumsförutsägelser, medan djupförstärkningsinlärning tillämpas på ett flödeskontrollproblem, nämligen minskningen av motståndet i ett öppet kanalflöde. Long short-term memory (LSTM, Hochreiter & Schmidhuber 1997) nätverk och Koopman non-linear forcing (KNF) modeller optimeras för att utföratidsförutsägelser i två turbulensmodeller med reducerad ordning, nämligen nio-ekvationsmodellen som föreslagits av Moehlis et al. (2004) och en trunkerad proper orthogonal decomposition (POD) av ett minimalt kanalflöde (Jiménez & Moin 1991). I den första applikationen kan båda modellerna producera korrekta korttidsförutsägelser, dessutom är de förutsagda trajektorierna statistiskt korrekta. KNF-modeller överträffar LSTM-nätverk i kortsiktiga förutsägelser, med en mycket lägre utbildningsberäkningskostnad. I den andra uppgiften kan endast LSTM nätverken tränas framgångsrikt, med trajektorier som är statistiskt korrekta. Spatiala förutsägelser utförs i två turbulenta flöden, en öppen kanal flöde och en gränsskikt. Fully-convolutional networks (FCN) används för att förutsäga tvådimensionella hastighetsfluktuationsfält vid givet avstånd från väggen med hjälp av väggmätningar (och vice versa). Tack vare deras icke-linjär karaktär ger dessa modeller bättre rekonstruktionsprestanda än optimala linjära metoder som extended POD (Borée 2003). Slutligen visar vi potentialen med djup förstärkningsinlärning för att upptäcka nya kontrollstrategier i turbulenta flöden. Genom att inrama strömningsmekaniska problemet som en förstärknings-inlärningsmiljö med flera agenter och genom att träna agenterna med hjälp av en positionsinvariant deep deterministic policy gradient (DDPG) algoritm, kan vi lära oss en kontrollstrategi som uppnår en anmärkningsvärd 30% minskning av luftmotståndet, vilket jämfört med existerande strategier är en förbättring med cirka 10 procentenheter.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 342
Series
TRITA-SCI-FOU ; 2023:27
Keywords
turbulence, deep learning, deep reinforcement learning, flow control, turbulens, djupinlärning, djupförstärkningsinlärning, flödeskontroll
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-326961 (URN)978-91-8040-601-7 (ISBN)
Public defence
2023-06-12, F3, Lindstedtsvägen 26 & 28, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, European Research Council, 2021-CoG-101043998, DEEPCONTROLSwedish e‐Science Research CenterKnut and Alice Wallenberg Foundation
Note
QC 230516
2023-05-162023-05-152023-08-14Bibliographically approved