kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Scalable, efficient piezoelectric wood nanogenerators enabled by wood/ ZnO nanocomposites
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-0476-3323
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-1029-6912
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-1591-5815
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-5818-2378
2022 (English)In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 160, article id 107057Article in journal (Refereed) Published
Abstract [en]

The need for sustainable development creates opportunities for biomass-based materials design toward piezo-electric mechanical energy harvesting. Wood is promising due to its hierarchical, porous structure. Here, piezoelectric nanogenerators (PENGs) were prepared through nanostructure-controlled zinc oxide (ZnO) growth inside the outer wood layers of veneers. Mechanisms for formation of various ZnO nanostructures in wood are analyzed. Controlled morphologies of nanoparticles, nanorods, nanowires, and nanoflakes were realized and characterized by field emission-scanning electron microscopy (FE-SEM) and small angle x-ray scattering (SAXS), allowing tunable piezoelectric output. Nanostructures with higher aspect ratios i.e. nanorods and nanowires resulted in higher voltage during cyclic loading. An optimum voltage of 1.3-1.4 V was obtained with wood/ZnO nanowire or nanorod composites at a force of approximate to 8 N. The current output is in the range of 0.85-11 nA, which could be scaled up to ~130 nA with a larger area device. When mounted in shoe soles, these wood/ZnO PENGs generated 1-4 V from walking/jogging motions. The hydrothermal growth method is scalable, which facilitates practical applications.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 160, article id 107057
Keywords [en]
Biocomposites, Mechanical energy harvesting, Inorganic-organic hybrids, ZnO nanoengineering
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-316026DOI: 10.1016/j.compositesa.2022.107057ISI: 000827237500004Scopus ID: 2-s2.0-85132751394OAI: oai:DiVA.org:kth-316026DiVA, id: diva2:1686328
Note

QC 20220809

Available from: 2022-08-09 Created: 2022-08-09 Last updated: 2022-08-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ram, FarsaGaremark, JonasLi, YuanyuanBerglund, Lars

Search in DiVA

By author/editor
Ram, FarsaGaremark, JonasLi, YuanyuanBerglund, Lars
By organisation
BiocompositesWallenberg Wood Science Center
In the same journal
Composites. Part A, Applied science and manufacturing
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 157 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf