kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analytical and Numerical Models for TE-Wave Absorption in a Graded-Index GNP-Treated Cell Substrate Inserted in a Waveguide
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.ORCID iD: 0000-0001-5396-141x
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.ORCID iD: 0000-0003-0369-7520
2022 (English)In: Applied Sciences, E-ISSN 2076-3417, Vol. 12, no 14, p. 7097-, article id 7097Article in journal (Refereed) Published
Abstract [en]

In this paper, absorption phenomena in a hollow waveguide with an inserted graded dielectric layer are studied, for the case of transverse electric (TE) wave propagation. The waveguide model aims to be applicable to a study of a potential cancer treatment by heating of gold nanoparticles (GNPs) inside the cancer cells. In our previous work, general exact analytical fomulas for transmission, reflection, and absorption coefficients were derived. These fomulas are further developed here to be readily applicable to the calculation of the absorption coefficient within the inserted lossy layer only, quantifying the absorption in the GNP-fed cancer tissue. To this end, we define new exact analytic scale factors that eliminate unessential absorption in the surrounding lossy medium. In addition, a numerical model was developed using finite element method software. We compare the numerical results for power transmission, reflection and absorption coefficients to the corresponding results obtained from the new modified exact analytic fomulas. The study includes both a simple example of constant complex permittivities, and a more realistic example where a dispersive model of permittivity is used to describe human tissue and the electrophoretic motion of charged GNPs. The results of the numerical study with both non-dispersive and dispersive permittivities indicate an excellent agreement with the corresponding analytical results. Thus, the model provides a valuable analytical and numerical tool for future research on absorption phenomena in GNP-fed cancer tissue.

Place, publisher, year, edition, pages
MDPI AG , 2022. Vol. 12, no 14, p. 7097-, article id 7097
Keywords [en]
waveguide, graded index, gold nanoparticles, optimal absorption, cancer treatment
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-316246DOI: 10.3390/app12147097ISI: 000834488500001Scopus ID: 2-s2.0-85137340298OAI: oai:DiVA.org:kth-316246DiVA, id: diva2:1688094
Note

QC 20220817

Available from: 2022-08-17 Created: 2022-08-17 Last updated: 2024-11-29Bibliographically approved
In thesis
1. Wave propagation in graded material composites with extraordinary properties
Open this publication in new window or tab >>Wave propagation in graded material composites with extraordinary properties
2022 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [sv]

I denna avhandling studeras elektromagnetisk vågutbredning i graderade materialkompositer med extraordinära egenskaper. Två sådana materialkompositsystem studeras särskilt, med hjälp av både analytiska och beräkningstekniska elektromagnetiska metoder.

Det första systemet används för utvecklingen av en lovande icke-invasiv metod för cancerbehandling, som bygger på att tumören med insatta guldnanopartiklar värms upp med hjälp av mikrovågsstrålning. En vågledarstruktur föreslås bestående av ett tunt dielektriskt skikt med en kontinuerlig graderad materialövergång till dess omgivande material till vardera sidan av skiktet. Det tunna lagret består av cancervävnad med insatta guldnanopartiklar som drivs in i elektroforetisk svängning med hjälp av elektromagnetisk strålning. Analytiska lösningar för det givna vågledarproblemet erhålls, vilket möjliggör beräkning av absorptionskoefficienterna endast inom det tunna skiktet, vilket är viktigt för bedömning av genomförbarheten av den tänkta medicinska tillämpningen. De dispersiva dielektriska modellerna som beskriver de elektromagnetiska egenskaperna hos de relevanta biologiska vävnaderna föreslås och diskuteras. Numeriska simuleringar gjorda i COMSOL Multiphysics är i utmärkt överensstämmelse med och validerar de analytiska resultaten.

Det andra systemet involverar vågutbredning från ett högerhänt material till ett vänsterhänt metamaterial i fri rymd. De två materialen är impedansmatchade, vilket säkerställer ingen reflektion, och det graderade gränssnittet mellan dem beskrivs av en kontinuerlig funktion. Metamaterialkompositer med rumsligt varierande materialparametrar har fått ett ökande teoretiskt och experimentellt intresse de senaste två decennierna. De är användbara för ett antal tillämpningar, såsom transformationsoptik. I denna uppsats diskuteras egenskaperna hos vänsterhänta material. Fältlösningarna till det impedansmatchade graderade gränssnittet härleds, och en numerisk modell utvecklas i COMSOL. Resultaten bekräftar de extraordinära egenskaperna hos vänsterhänta material.

Abstract [en]

In this thesis, electromagnetic wave propagation in graded material composites with extraordinary properties are studied. Two such material composite systems are studied in particular, using both analytical and computational electromagnetic methods.

The first system is used for the development of a promising non-invasive method of cancer treatment based on heating the tumors with inserted gold nanoparticles by means of microwave radiation. A waveguide structure is proposed consisting of a thin dielectric layer with a continuous graded material transition to its surrounding materials to either side of the layer. The thin layer consists of cancer tissue with inserted gold nanoparticles that are driven into electrophoretic oscillation by means of electromagnetic radiation. Analytical solutions for the given waveguide problem are obtained, allowing the calculation of the absorption coefficients within the thin layer only, which is important for assessment of the feasibility of the envisioned medical application. The dispersive dielectric models describing the electromagnetic properties of the relevant biological tissues are proposed and discussed. Numerical simulations done in COMSOL Multiphysics are in excellent agreement with and validate the analytical results.

The second system involves wave propagation from a right-handed material to a left-handed metamaterial in an open boundary system. The two materials are impedance-matched, thus ensuring no reflection, and the graded interface between them is described by a continuous function. Metamaterial composites with spatially varying material parameters have been given an increasing theoretical and experimental interest the last two decades. They are useful for a number of applications, such as transformation optics. In this thesis, the properties of left-handed media are discussed. The field solutions to the impedance-matched graded interface are derived, and a numerical model is developed in COMSOL. The results confirm the extraordinary properties of left-handed media.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. vii, 33
Series
TRITA-EECS-AVL ; 2022:72
Keywords
gradient-index, waveguides, gold nanoparticles, cancer treatment, left-handed media, negative index materials, metamaterials
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Nano Technology Other Physics Topics
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-321787 (URN)978-91-8040-406-8 (ISBN)
Presentation
2022-12-16, H1, Teknikringen 33, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20221129

Available from: 2022-11-29 Created: 2022-11-28 Last updated: 2022-11-29Bibliographically approved
2. Radiofrequency heating of gold nanoparticles for medical applications
Open this publication in new window or tab >>Radiofrequency heating of gold nanoparticles for medical applications
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, the electromagnetic radiofrequency (RF) heating of gold nanoparticles (AuNPs) is investigated by means of analytical and numerical methods. The aim is to establish methods to identify model parameters for AuNP-mediated RF heating of biological tissue. These investigations can ultimately be used to assess the feasibility of a non-invasive and targeted method of cancer therapy by hyperthermia.

As a first step, an analytical model is developed, as a tool to study the absorption in a thin AuNP-treated cell substrate inserted in a waveguide. The interior of the waveguide is modeled as a continuous material composite with graded transition between the AuNP-treated layer and its surroundings. Exact analytical solutions for the fields, and the transmission and absorption parameters are obtained. The introduction of a scaling factor allows the calculation of the absorption within the AuNP-treated layer only, thus excluding losses in the surrounding material. Dispersive dielectric models describing the electromagnetic properties of relevant tissues are discussed and applied in numerical examples. The waveguide structure is numerically simulated in COMSOL Multiphysics, confirming the validity of analytical results.

The physical mechanisms that enable the heating of AuNPs by RF irradiation are not entirely understood. This thesis studies two proposed mechanisms and evaluates under what conditions they can amount to the required heating of the targeted tissue: electrophoretic oscillation and Joule heating. These effects are studied using electrostatic scattering theory.

RF Joule heating is found to be negligible in spherical AuNPs, but deemed possible in long nanowires. It is of particular interest to study how the presence of a thin dielectric shell affects the heating capacity in ellipsoidal AuNPs. In the context of the medical application, AuNPs are coated with functionalized ligands for tumor targeting. The Joule heating of coated AuNPs submerged in tissue is thus studied with respect to coating properties for AuNPs of all nanoscale-sized spheroidal shapes. The coating is found to strongly affect the overall AuNP heat absorption, and the effect is heavily dependent on the electromagnetic and spatial properties of the coating. The type of ligands to be used in practical applications should therefore be evaluated based on these properties, in addition to its targeting efficacy and biocompatibility.

Finally, the electrophoretic heating of AuNP suspensions is investigated. In the literature, this mechanism has been evaluated only for spherical AuNPs and mostly when they are submerged in aqueous solutions. Here, the electrophoretic heating is studied for any spheroidal shape in all nanoscale sizes. Heating is found to be strongest for spherical AuNPs a few nanometers in size dispersed in water, but significant heating is also observed in nanorods up to 40 nm in length and nanodisks with diameters up to 10 nm. However, the potency of the effect is strongly affected by the solvent. Due to the high viscosity in tissues, and in particular cancerous tissues, the study suggests that electrophoretic heating of AuNPs is negligible in these media. 

Abstract [sv]

I denna avhandling studeras elektromagnetisk radiofrekvensuppvärmning av guldnanopartiklar (AuNPs) med hjälp av analytiska och numeriska metoder. Syftet är att etablera metoder för att identifiera modellparametrar för AuNP-medierad radiofrekvensuppvärmning av biologisk vävnad. Dessa undersökningar kan i slutändan användas för att bedöma genomförbarheten av en icke-invasiv metod för cancerterapi genom riktad hypertermi.

Som ett första steg utvecklas en analytisk modell för att studera absorptionen i ett tunt AuNP-behandlat cellsubstrat insatt i en vågledare. Vågledaren med det insatta cellsubstratet modelleras som en kontinuerlig materialkomposit med graderad övergång mellan det AuNP-behandlade lagret och dess omgivning. Exakta analytiska lösningar för fälten, samt för transmissions- och absorptionsparametrar för vågledaren erhålls. Införandet av en skalningsfaktor möjliggör beräkning av absorptionen endast inom det AuNP-behandlade lagret, vilket utesluter förluster i det omgivande materialet. Dispersiva dielektriska modeller, som beskriver de elektromagnetiska egenskaperna hos relevanta vävnader, diskuteras och tillämpas i numeriska exempel. Vågledaren simuleras numeriskt i COMSOL Multiphysics, vilket bekräftar giltigheten av de analytiska resultaten.

De fysikaliska mekanismerna som möjliggör uppvärmning av AuNP genom radiofrekvent strålning är inte helt klarlagda. Denna avhandling studerar två föreslagna mekanismer, och utvärderar under vilka förhållanden de kan uppnå den erforderliga uppvärmningen: elektroforetisk oscillation och Joule-uppvärmning. Studeras med hjälp av elektrostatisk spridningsteori.

Radiofrekvent Joule-uppvärmning är försumbar i sfäriska AuNPs, men anses möjlig i långa nanotrådar. Det är av särskilt intresse att studera hur närvaron av ett tunt dielektriskt skal påverkar uppvärmningskapaciteten i ellipsoida AuNPs. Inom den tänkta medicinska tillämpningen är AuNPs belagda med funktionaliserade ligander för att kunna riktas mot en specifik tumör. Joule-uppvärmningen av belagda AuNPs i vävnad studeras således med avseende på beläggningsegenskaperna för AuNPs av alla sfäroida former på nanoskala. Det dielektriska skalet visar sig starkt påverka den totala AuNP-värmeabsorptionen, och effekten är starkt beroende av beläggningens elektromagnetiska och geometriska egenskaper. De ligander som ska användas i de praktiska tillämpningarna bör därför utvärderas baserat på dessa egenskaper, i tillägg till deras målinriktningsförmåga och biokompatibilitet.

Slutligen undersöks den elektroforetiska uppvärmningen av AuNP suspensioner. I litteraturen har denna mekanism främst utvärderats för sfäriska AuNPs i vattenlösningar. Här studeras den elektroforetiska uppvärmningen för en godtycklig sfäroid form på nanoskala. Uppvärmningen visar sig vara starkast för sfäriska AuNPs som är några nanometer stora och spridda i vatten, men betydande uppvärmning observeras också i nanostavar upp till 40 nm i längd och nanodiskar med diametrar upp till 10 nm. Den elektroforetiska effekten påverkas emellertid starkt av bakgrundslösningen. På grund av den höga viskositeten i vävnader, och i synnerhet i cancervävnader, antyder studien att elektroforetisk uppvärmning av AuNPs är försumbar i dessa medier.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 55
Series
TRITA-EECS-AVL ; 2025:5
Keywords
gold nanoparticles, radiofrequency, hyperthermia, cancer therapy, scattering theory, waveguide theory
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Nano Technology Atom and Molecular Physics and Optics
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-356769 (URN)978-91-8106-146-8 (ISBN)
Public defence
2025-01-17, https://zoom.us/j/64235189553, H1, Teknikringen 33, Stockholm, 09:30 (English)
Opponent
Supervisors
Available from: 2024-11-29 Created: 2024-11-29 Last updated: 2024-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Svendsen, Brage B.Dalarsson, Mariana

Search in DiVA

By author/editor
Svendsen, Brage B.Söderström, MikaCarlens, HampusDalarsson, Mariana
By organisation
Electromagnetic Engineering
In the same journal
Applied Sciences
Electrical Engineering, Electronic Engineering, Information EngineeringNano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf