Open this publication in new window or tab >>
2022 (English) Doctoral thesis, comprehensive summary (Other academic)
Abstract [en] Autonomous underwater vehicles (AUVs) equipped with multibeam echo-sounders have become indispensable tools for bathymetric mapping due to their ability to reach seabed regions inaccessible to surface vessels. However, the closer proximity to the survey area comes at the expense of a growing error in the AUV global pose estimate due to the lack of prior maps or a geo-referencing system underwater, such as GPS. This limitation, together with the changing environment dynamics in deep sea waters and the scale of the areas to map, makes simultaneous localization and mapping (SLAM) a necessary enabler for long-range, reliable and safe AUV navigation in open sea missions.SLAM has allowed the safe deployment of self-driving cars on the streets and service robots in our homes, but remains a challenge in the deep sea domain. This is due to the constrained sensing capabilities available underwater and the scarcity of distinguishable features in the seabed. As a result of these, successful place recognition is infrequent, yielding loop closure (LC) detections more sparse and therefore more crucial. To adequately factor in each LC constraint in a SLAM back-end, their uncertainties need to be carefully parameterized to weight their influence in the final AUV trajectory estimate. Thus, this thesis is concerned with modelling these uncertainties, in particular when analytical models cannot be derived, focusing instead in data-driven methods.
We present our contributions in three key SLAM areas targeting this problem. First, our work on inferring the uncertainties in the bathymetric submap registration process shows how deep learning techniques can be successfully applied to learning noise models directly from raw data and without ground truth position information. We further show how the predicted uncertainties improve the convergence of submap-based graph-SLAM solutions in AUV surveys.Secondly, we introduce a methodology to construct terrain representations with Stochastic Variational Gaussian processes (SVGP) propagating the AUV localization and sensors uncertainties into the final maps. The proposed approach is not limited to any GP kernel or noise model in the data and can handle datasets of millions of training points. The experiments demonstrate how the learned terrain models yield improved particle filter estimates in AUV localization problems.Finally, we adapt the previous SVGP mapping approach to online bathymetric learning and demonstrate its scalability and flexibility in a Rao-Blackwellized SLAM framework. The presented RBPF-SVGP solution is capable of maintaining up to 100 particles in parallel, each with a single SVGP map capable of regressing entire surveys. Our results show how the RBPF-SVGP can perform in real time in an embedded platform and can be executed live in an AUV.
Additionally, all the implementations proposed have been made publicly available to promote further research in underwater SLAM and the adoption of common open-source frameworks, datasets and benchmarks in the field.
Abstract [sv] Autonoma undervattensfarkoster (AUV) utrustade med multibeam-ekolod har blivit ett oumbärligt verktyg för batymetrisk kartläggning tack vare dess förmåga att nå hahvsbottenområden som är oåtkomliga för ytfartyg.Fördelen med att kunna komma närmare till undersökningsområden kommer dock på bekostnad av ett växande fel i AUVs globala positionsuppskattning, detta på grund av bristen på tidigare kartor eller undervattens-georeferenssystem, såsom GPS.Denna begränsning, tillsammans med förändrande vattendynamik i djuphavsvatten och skalan på områden som ska kartläggas, gör att Simultaneous Localization and Mapping (SLAM) är ett måste för pålitlig och säker AUV-navigering i öppet hav för långa avstånd.
SLAM har möjliggjort säker utplacering av självkörande bilar på gator och servicerobotar i våra hem, men i djuphavsområdet är SLAM fortfarande en utmaning.Detta beror på de begränsade avkänningsmöjligheterna tillgängliga under vatten och avsaknaden på urskiljbara kännetecken i havsbotten.På grund av detta är lyckad platsigenkänning sällsynt, vilket leder till färre detektion av loop closure (LC). Varje LC blir därmed mer avgörande.För att korrekt kunna lägga in LC-begränsningar i en SLAM-backend måste deras osäkerheter noggrant parametriseras för att väga deras inflytande i den slutliga uppskattningen av AUVs kurs.Denna doktorsavhandling handlar därför om modellering av dessa osäkerheter och fokuset ligger på datadrivna metoder i tillfällen där analytiska modeller inte kan härledas.
Vi presenterar våra bidrag inom tre nyckelområden för SLAM med hänsyn till detta problem.För det första visar vårt arbete med att härleda osäkerheter i den batymetriska kartregistreringsprocessen hur djupinlärningstekniker kan tillämpas för att lära sig brusmodeller direkt från rådata och utan ground truth positionsinformation.Vidare visar vi hur de förutspådda osäkerheterna förbättrar konvergensen av submap-baserad graf-SLAM lösningar i AUV kartläggningar.För det andra introducerar vi en metodik för att konstruera terrängrepresentationer där Stochastic Variational Gaussian processes (SVGP) används för att sprida AUVs lokaliserings- och sensorosäkerheter till de slutliga batymetriska kartorna.Den föreslagna metodiken är inte begränsad till någon GP-kärna eller brusmodell i data och kan hantera dataset med miljontals träningspunkter.Experimenten visar hur de lärda terrängmodellerna förbättrar partikelfilteruppskattningar av AUV-lokalisering.Slutligen anpassar vi den tidigare nämnda SVGP-kartläggningsmetoden till online batymetriskinlärning och visar dess skalbarhet och flexibilitet i ett Rao-Blackwellized SLAM-ramverk.Den presenterade RBPF-SVGP lösningen kan köras med upp till 100 partiklar parallellt, där varje ensklid partikel har sin egen SVGP-karta över hela kartläggningsområden.Våra resultat visar hur RBPF-SVGP kan tillämpas i realtid i en inbyggd plattform och kan utföras live i en AUV.
Vidare har alla föreslagna implementeringar gjorts allmänt tillgängliga för att främja vidare forskning inom undervattens-SLAM och antagande av gemensamma ramverk med öppen källkod, dataset och benchmark inom forskningsområdet.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 44
Series
TRITA-EECS-AVL ; 2022:70
National Category
Robotics and automation
Research subject
Computer Science
Identifiers urn:nbn:se:kth:diva-321605 (URN) 978-91-8040-402-0 (ISBN)
Public defence
2022-12-15, https://kth-se.zoom.us/j/69562986585, Kollegiesalen, Brinellvägen 6, Stockholm, Stockholm, 14:00 (English)
Opponent
Supervisors
Note QC 20221128
2022-11-282022-11-252025-02-09 Bibliographically approved