kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deformation and Fracture Behavior of Transparent Wood-Polymer Biocomposites
KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0003-2566-5271
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transparent wood-polymer biocomposites (TWPBs) are interesting wood-based materials with a unique combination of optical transmittance and mechanical properties. The wood substrate is delignified (removal of lignin) while the wood microstructure is preserved. In this thesis, the deformation and fracture behavior of TWPBs are investigated, and material properties are determined. In addition, a method is presented for identifying orthotropic and fracture properties from single small and thin specimen geometries of wood composites by minimizing the discrepancy between experimentally measured and numerically generated strain fields. Material model parameters in the finite element method (FEM) are updated by optimization routines (FEMU). The focus of the thesis is on TWPBs, but wood fiber biocomposites are included to develop the FEMU approach. In

Paper I and II, the mechanical and optical behavior of laminated and single lamina of TWPBs are investigated. Orthotropic mechanical properties, such as elastic stiffness parameters and tensile strength, are determined along and across the fiber direction, and the deformation mechanisms are characterized. Reducedanisotropic ratio (e.g., a ratio of in-plane elastic stiffness parameters), increased wood cell wall effective properties, and improved stress transfer by a more homogeneous strain field are found for TWPBs compared to native wood. Lamination moderates the weakest properties and allows structural tailoring, making it more suitable as a load-bearing material.

In Paper III and IV, fracture and deformation mechanisms are investigated, and the fracture properties are determined using cohesive zone models (CZM) along and across the fiber direction. This approach made it possible to explain 90° crack deflection phenomenon. Large fracture process zones (FPZ) dominated by the cell wall properties are observed, involving fiber pull-out with large cohesive strength in the fiber direction. Also, cross-over bridging mechanisms by cell wall peeling in the transverse fiber direction, with low cohesive strength properties. Longitudinal fracture properties of native wood are improved with a polymer matrix, while the transverse fracture properties are reduced as well as the size of the FPZ.

In Paper V, random and oriented wood-fiber biocomposites are investigated, relating nano- and microscale structures to macroscopic mechanical properties. Orthotropic elastic-plastic material parameters are identified from off-axis tensile tests by using FEMU. Fracture mechanisms are related to microstructural features by the use of supporting in situ tensile tests in a scanning electron microscope.

Abstract [sv]

Genomskinliga träpolymer biokompositer (TWPB) är intressanta träbaserade material med unik kombination av optiska och mekaniska egenskaper. Träsubstraten är delignifierat och trämikrostrukturen är bevarad. I denna avhandling studeras deformation- och brottmekanismer hos TWPB, och deras mekaniska egenskaper bestäms. Utöver detta utvecklas en metod för att bestämma ortotropa material- och brottparametrar från enstaka små och tunna provstavsgeometrier av träkompositer genom att jämföra töjningsfält från experiment och numeriska modeller med optimerade modellparametrar i finita elementmetoden (FEMU). Fokus i avhandlingen är på TWPB men även generella träfiberkomopositer är av intresse för att utveckla en metod för FEMU.

I artiklarna I and II undersöks de mekaniska och optiska egenskaperna för laminerade och enriktade TWPBs. Materialparametrar bestäms och deformationsmekanismer identifieras. För TWPB visade resultaten minskade förhållandet av anisotropi mellan elastiska parametrar, cellväggens effektiva egenskaper ökade och jämfört med rent trä så uppmättes betydligt mer homogena töjningsfält. De svaga mekaniska egenskaperna i transversell fiberriktning får mindre betydelse genom lamineringen, vilket gör materialen bättre lämpade för lastbärande konstruktioner.

I artiklarna III och IV undersöks deformations- och brottmekanismer och brottegenskaperna tas fram med hjälp av kohesiva zon modeller längs de två materialriktningarna i planet. Stora brottprocesszoner (FPZ) observerades, och de domineras av cellväggens egenskaper, med fiberbrott för longitudinell belastning. För transversell belastning dominerar längsgående gående sprickor i cellväggen på grund av svag kohesiv hållfasthet. Brottegenskaperna i fiberriktningen förbättras på grund av polymermatrisen, medan transversella brottegenskaperna försämrades och storleken på FPZ minskade jämfört med rent trä.

I artikel V undersöks träfiberbiokompositer med riktad och slumpmässig fiberorientering samt effekten av olika fiberstrukturer från nano- till mikroskala på materialparametrarna. Ortotropa elastiskt-plastiska materialparametrar är framtagna med FEMU för de riktade träfiberbiokompositerna från dragprover lastad med en vinkel från fiberriktningen. Mikromekanismerna är observerade från töjningsfält och brottmekanismerna är relaterade till materialens struktur med hjälp dragprover på plats under ett svepelektronmikroskop.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022.
Series
TRITA-SCI-FOU ; 2022:38
Keywords [en]
biocomposites, fracture mechanics, strain field measurement, cohesive zone modeling, mechanical properties
National Category
Composite Science and Engineering
Research subject
Solid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-316995ISBN: 978-91-8040-323-8 (print)OAI: oai:DiVA.org:kth-316995DiVA, id: diva2:1692684
Public defence
2022-09-29, Kollegiesalen, also on zoom: https://kth-se.zoom.us/j/65216494216, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC220905

Available from: 2022-09-05 Created: 2022-09-02 Last updated: 2023-06-30Bibliographically approved
List of papers
1. Transparent plywood as a load-bearing and luminescent biocomposite
Open this publication in new window or tab >>Transparent plywood as a load-bearing and luminescent biocomposite
Show others...
2018 (English)In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 164, p. 296-303Article in journal (Refereed) Published
Abstract [en]

Transparent wood (TW) structures in research studies were either thin and highly anisotropic or thick and isotropic but weak. Here, transparent plywood (TPW) laminates are investigated as load-bearing biocomposites with tunable mechanical and optical performances. Structure-property relationships are analyzed. The plies of TPW were laminated with controlled fiber directions and predetermined stacking sequence in order to control the directional dependence of modulus and strength, which would give improved properties in the weakest direction. Also, the angular dependent light scattering intensities were investigated and showed more uniform distribution. Luminescent TPW was prepared by incorporation of quantum dots (QDs) for potential lighting applications. TPW can be designed for large-scale use where multiaxial load-bearing performance is combined with new optical functionalities.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Transparent Wood, Nanotechnology, Biocomposite, Photonics
National Category
Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-233274 (URN)10.1016/j.compscitech.2018.06.001 (DOI)000440121700036 ()2-s2.0-85048381154 (Scopus ID)
Funder
EU, European Research Council, 742733
Note

QC 20180821

Available from: 2018-08-21 Created: 2018-08-21 Last updated: 2024-03-18Bibliographically approved
2. Mechanical properties of transparent high strength biocomposites from delignified wood veneer
Open this publication in new window or tab >>Mechanical properties of transparent high strength biocomposites from delignified wood veneer
2020 (English)In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 133, article id 105853Article in journal (Refereed) Published
Abstract [en]

Transparent wood (TW) based on delignified birch veneer and thermoplastic poly(methyl methacrylate) (PMMA) is investigated by uniaxial tensile tests and full-field strain analyses based on digital image correlation techniques. TW is considered as a composite of unidirectional fibers (wood veneer) in a matrix (PMMA). Four in-plane elastic constants along the material axes are reported to enable the usage of continuum mechanics and lamination theory. Longitudinal composite strength is as high as 270 MPa at a reinforcement content of only 25 vol%. The failure behavior is interpreted based on strain field development. Strong reinforcement effects were observed from delignified birch veneer. Despite the fragility of delignified veneers, this constituent provides unexpectedly high reinforcement due to the high cellulose content and favorable stress transfer mechanisms.

Place, publisher, year, edition, pages
Elsevier BV, 2020
National Category
Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-273255 (URN)10.1016/j.compositesa.2020.105853 (DOI)000528198000004 ()2-s2.0-85080888979 (Scopus ID)
Note

QC 20250311

Available from: 2020-05-12 Created: 2020-05-12 Last updated: 2025-03-11Bibliographically approved
3. Transverse fracture toughness of transparent wood biocomposites by FEM updating with cohesive zone fracture modeling
Open this publication in new window or tab >>Transverse fracture toughness of transparent wood biocomposites by FEM updating with cohesive zone fracture modeling
2022 (English)In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 225, p. 109492-, article id 109492Article in journal (Refereed) Published
Abstract [en]

Little is known about fracture toughness of monomer-impregnated wood biocomposites, with no data for transparent wood. For building applications, toughness is important, but the anisotropic nature of wood generates complex stress distributions that needs to be accounted for. A four-point bending fracture mechanics test is combined with digital image correlation (DIC) measurements of displacement fields and finite element model updating. The elastic parameters of an orthotropic composite and the parameters for a cohesive zone fracture model are determined from one transverse crack growth experiment. The fracture toughness for tangential longitudinal (TL) cracks was lower than expected, as explained by local peeling fracture of the wood cell wall.

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Strain field measurements, Digital image correlation, Wood composites, Thermoplastic composite, Crack bridging
National Category
Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-313703 (URN)10.1016/j.compscitech.2022.109492 (DOI)000799308500002 ()2-s2.0-85129744449 (Scopus ID)
Note

QC 20221004

Available from: 2022-06-10 Created: 2022-06-10 Last updated: 2022-10-04Bibliographically approved
4. Fracture toughness and 90° crack deflection analyzed by cohesive zone models for wood and transparent wood biocomposites loaded in the fiber direction
Open this publication in new window or tab >>Fracture toughness and 90° crack deflection analyzed by cohesive zone models for wood and transparent wood biocomposites loaded in the fiber direction
(English)Manuscript (preprint) (Other academic)
National Category
Composite Science and Engineering Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-316994 (URN)
Note

QC 20220905

Available from: 2022-09-02 Created: 2022-09-02 Last updated: 2022-09-05Bibliographically approved
5. Mechanical behavior of all-lignocellulose composites—Comparing micro- and nanoscale fibers using strain field data and FEM updating
Open this publication in new window or tab >>Mechanical behavior of all-lignocellulose composites—Comparing micro- and nanoscale fibers using strain field data and FEM updating
Show others...
2022 (English)In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 161, p. 107095-107095, article id 107095Article in journal (Refereed) Published
Abstract [en]

Hot-pressed, binder-free wood fiber (WF) composites can serve as load-bearing and eco-friendly materials, and the comparison of nanoscale fibril reinforcement with microscale wood fibers is of interest. We investigated property differences and interpreted deformation mechanisms with strain field measurements using digital image correlation combined with orthotropic, elastic–plastic finite element model updating predictions. Random-in-plane microfibrillated lignocellulose (MFLC) composites showed better mechanical properties than WF composites due to stronger strain-hardening from lower porosity and better interfibrillar adhesion, provided by the intrinsic lignin-hemicellulose binder. Axially oriented wood fiber composites (O-WF) achieved comparable mechanical properties to random MFLC, with lower values for eco-indicators. The FEM updating method could successfully determine all 4 independent elastic constants from one 45° off-axis experiment, although the plasticity model required two more experiments.

Place, publisher, year, edition, pages
Elsevier BV, 2022
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-316597 (URN)10.1016/j.compositesa.2022.107095 (DOI)000884761000001 ()2-s2.0-85135200008 (Scopus ID)
Funder
Swedish Foundation for Strategic Research, FID15-0115EU, Horizon 2020KTH Royal Institute of TechnologyEU, European Research Council
Note

QC 20220824

Available from: 2022-08-23 Created: 2022-08-23 Last updated: 2022-12-02Bibliographically approved

Open Access in DiVA

fulltext(1057 kB)125 downloads
File information
File name FULLTEXT01.pdfFile size 1057 kBChecksum SHA-512
053049bc296e93a3a566ed48f078f90fb4dc4b0d8ed6c9166092d9fa972ad63dd06b11fb95926da5912b6faa160bbd92b398a4e60212414b734472c00c24e68e
Type fulltextMimetype application/pdf

Authority records

Jungstedt, Erik

Search in DiVA

By author/editor
Jungstedt, Erik
By organisation
Engineering Mechanics
Composite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 125 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 999 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf