Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Direct numerical simulations (DNS) of turbulence have a virtually unbounded need for computing power. To carry out these simulations, software, computer architectures, and algorithms must operate as efficiently as possible to amortize the large computational cost. However, in a computing landscape increasingly incorporating heterogeneous computer systems, changes are necessary. In this thesis, we consider how DNS can be carried out efficiently on upcoming heterogeneous computer systems. This work relates to developing algorithms for upcoming heterogeneous computer architectures, overcoming software challenges associated with large-scale DNS on these platforms, and applying these developments to new flow cases that were previously too costly to carry out. We consider in particular the spectral element method for DNS and evaluate how this method maps to field-programmable gate arrays, graphics processing units, as well as conventional processors. We also consider the issue of trading arithmetic operations for less communication, reducing the cost of solving the linear systems that arise in the spectral element method. Our developments are incorporated into the spectral element framework Neko, enabling Neko to strong-scale efficiently on the largest supercomputers in the world. Finally, we have carried out several DNS such as the simulation of a Flettner rotor in a turbulent boundary layer and simulating Rayleigh-Bénard convection at very high Rayleigh numbers. The developments in this thesis enable the high-fidelity simulation of turbulence on emerging computer systems with high parallel efficiency and performance.
Abstract [sv]
Direct numerisk simulering (DNS) av turbulens kräver enorma mängder datorkraft. För att utföra simuleringar som DNS krävs det att mjukvara, datorarkitekturer och algoritmer samverkar så effektivt som möjligt tillsammans. Idag förändras superdatorer snabbt och inkoporerar nya heterogena datorarkitekturer. Detta innebär att nya tillvägagångssätt är nödvändiga för att tillgodogöra sig all beräkningskraft. I den här avhandlingen fokuserar vi på DNS på heterogena, storskaliga, datorsystem för att möjligöra nya simuleringar av turbulenta flöden. För att nå detta mål undersöker vi nya datorarkitekturer, analyserar och förbättrar de numeriska metoderna och algoritmerna vi använder och applicerar slutligen våra utvecklingar på nya simuleringar av turbulens. Vi fokuserar speciellt på den spektrala element metoden (SEM) för DNS och undersöker hur den beter sig på eng. field-programmable gate arrays, grafikkort och konventionella processorer. Vi bidrar även med analys av hur vi löser det linjära systemet som utgör kärnan i SEM för att bättre utnyttja den tillgängliga datorkraften och minska mängden data som behöver överföras. Våra förbättringar inkorporeras i SEM lösaren Neko och möjligör att Neko kan skala effektivt på de största superdatorerna i världen. Vi använder sedan detta ramverk för att genomföra flera storskaliga simuleringar. Vi genomför den första simuleringen av en Flettner rotor och dess interaktion med turbulent skjuvströmning samt simulering av Rayleigh-Bénard konvektion i en cylindrisk domän vid mycket höga Rayleigh tal. Avhandlingen möjligör detaljerad numerisk simulering av turbulens med hög skalbarhet och prestanda i dagens föränderliga datorlandskap.
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 54
Series
TRITA-EECS-AVL ; 2024:36
Keywords
High Performance Computing, Turbulence, Computational Fluid Dynamics, Heterogenous Computer Architectures, Högprestandaberäkningar, Turbulens, Numerisk Strömingsmekanik, Heterogena Datorarkitekturer
National Category
Computer Sciences Fluid Mechanics
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-345851 (URN)978-91-8040-910-0 (ISBN)
Public defence
2024-05-24, https://kth-se.zoom.us/s/61541415709, Kollegiesalen, Brinellvägen 6, Stockholm, 09:15 (English)
Opponent
Supervisors
Funder
Swedish e‐Science Research Center, SESSI
Note
QC 20240423
2024-04-232024-04-222025-02-05Bibliographically approved