kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sublinear-Round Parallel Matroid Intersection
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Theoretical Computer Science, TCS.
2022 (English)In: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , 2022, Vol. 229, article id 25Conference paper, Published paper (Refereed)
Abstract [en]

Despite a lot of recent progress in obtaining faster sequential matroid intersection algorithms, the fastest parallel poly(n)-query algorithm was still the straightforward O(n)-round parallel implementation of Edmonds' augmenting paths algorithm from the 1960s. Very recently, Chakrabarty-Chen-Khanna [FOCS'21] showed the lower bound that any, possibly randomized, parallel matroid intersection algorithm making poly(n) rank-queries requires (Equation presented)(n1/3) rounds of adaptivity. They ask, as an open question, if the lower bound can be improved to (Equation presented)(n), or if there can be sublinear-round, poly(n)-query algorithms for matroid intersection. We resolve this open problem by presenting the first sublinear-round parallel matroid intersection algorithms. Perhaps surprisingly, we do not only break the Õ(n)-barrier in the rank-oracle model, but also in the weaker independence-oracle model. Our rank-query algorithm guarantees O(n3/4) rounds of adaptivity, while the independence-query algorithm uses O(n7/8) rounds of adaptivity, both making a total of poly(n) queries.

Place, publisher, year, edition, pages
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , 2022. Vol. 229, article id 25
Series
Leibniz International Proceedings in Informatics, LIPIcs, ISSN 1868-8969 ; 229
Keywords [en]
Combinatorial Optimization, Matroid Intersection, Parallel Algorithms
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-317538DOI: 10.4230/LIPIcs.ICALP.2022.25Scopus ID: 2-s2.0-85133485958OAI: oai:DiVA.org:kth-317538DiVA, id: diva2:1695402
Conference
49th EATCS International Conference on Automata, Languages, and Programming, ICALP 2022, 4 July 2022 through 8 July 2022, Paris, France
Note

QC 20220913

Part of proceedings: ISBBN 978-395977235-8

Available from: 2022-09-13 Created: 2022-09-13 Last updated: 2024-11-03Bibliographically approved
In thesis
1. Matchings, Maxflows, Matroids: The Power of Augmenting Paths and Computational Models
Open this publication in new window or tab >>Matchings, Maxflows, Matroids: The Power of Augmenting Paths and Computational Models
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Matchings, Maximum Flow, and Matroid Intersections are fundamental combinatorial optimization problems that have been studied extensively since the inception of computer science. A series of breakthroughs in graph algorithms and continuous optimization in the past decade has led to exciting almost-optimal algorithms for maximum flow and bipartite matching. However, we are still far from fully understanding these problems. First, it remains open how to solve these problems in modern models of computation, such as parallel, dynamic, online, and communication models. Second, as algorithms become more sophisticated in pursuit of efficiency, they often sacrifice simplicity, potentially obscuring valuable combinatorial insights. This raises a fundamental question: can we develop efficient algorithms that maintain the combinatorial nature of these problems, rather than relying on linear algebra and continuous methods?

This thesis returns to the classic augmenting paths framework---the original approach to matchings, maximum flow, and matroid intersection---with the goal of developing new efficient combinatorial algorithms. Our key contributions include the first combinatorial algorithm achieving almost-linear time for maximum flow on dense graphs, and the first subquadratic independence-query algorithm for matroid intersection. For modern computational models, our contributions include an improved online rounding scheme for fractional matching (leading to an optimal online edge coloring algorithm), a resolution of the query and communication complexity for bipartite matching, and the first sublinear-round parallel algorithms for matroid intersection.

Abstract [sv]

Matchningar, Maximala Flöden och Matroidsnitt är grundläggande kombinatoriska optimeringsproblem som har studerats ingående sedan datorvetenskapens början.  En serie genombrott inom grafalgoritmik och kontinuerlig optimering under det senaste årentiondet har lett till imponerande nästan optimala algoritmer för maximalt flöde och bipartit matchning. Vi är dock fortfarande långt ifrån att fullt förstå dessa problem. För det första återstår frågan om hur man kan lösa dessa problem i andra beräkningsmodeller, såsom parallell-, dynamisk-, online- och kommunikationsmodeller. För det andra, när algoritmer blir allt mer sofistikerade i deras effektivitetsträvan, offrar de ofta enkelhet, vilket potentiellt kan dölja värdefulla kombinatoriska insikter. Detta motiverar en grundläggande fråga: kan vi utveckla effektiva algoritmer som bevarar den kombinatoriska karaktären hos dessa problem, istället för att förlita sig på linjär algebra och kontinuerliga metoder?

Denna avhandling återgår till de klassiska augmenting-pathsalgoritmerna---det ursprungliga angreppssättet för matchningar, maximalt flöde och matroid-snitt---med målet att utveckla nya effektiva kombinatoriska algoritmer. Våra viktigaste bidrag inkluderar den första kombinatoriska algoritmen som uppnår nästan linjär tid för maximalt flöde på täta grafer, och den första subkvadratiska independence-query-algoritmen för matroidsnitt. För moderna beräkningsmodeller inkluderar våra bidrag förbättrade  onlineavrundningsalgorithmer för fraktionell matchning (vilket leder till en optimal onlinealgoritm för kantfärgning), en lösning av query- och kommunikationskomplexiteten för bipartit matchning, och de första sublinjära parallella algoritmerna för matroidsnitt.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. x, 67
Series
TRITA-EECS-AVL ; 2024:84
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-355377 (URN)978-91-8106-091-1 (ISBN)
Public defence
2024-11-27, F3, Lindstedtsvägen 26 & 28, KTH, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20241105

Available from: 2024-11-05 Created: 2024-11-03 Last updated: 2024-11-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Blikstad, Joakim

Search in DiVA

By author/editor
Blikstad, Joakim
By organisation
Theoretical Computer Science, TCS
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf