kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Vectorized dataset of roadside noise barriers in China using street view imagery
Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ PRC, Nanjing 210023, Peoples R China.;State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Peoples R China.;Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China..
Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ PRC, Nanjing 210023, Peoples R China.;State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Peoples R China.;Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China.;Nanjing Normal Univ, Sch Math Sci, Jiangsu Prov Key Lab NSLSCS, Nanjing 210023, Peoples R China..
Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ PRC, Nanjing 210023, Peoples R China.;State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Peoples R China.;Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China..
Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ PRC, Nanjing 210023, Peoples R China.;State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Peoples R China.;Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China..
Show others and affiliations
2022 (English)In: Earth System Science Data, ISSN 1866-3508, E-ISSN 1866-3516, Vol. 14, no 9, p. 4057-4076Article in journal (Refereed) Published
Abstract [en]

Roadside noise barriers (RNBs) are important urban infrastructures to ensure that cities remain liveable. However, the absence of accurate and large-scale geospatial data on RNBs has impeded the increasing progress of rational urban planning, sustainable cities, and healthy environments. To address this problem, this study creates a vectorized RNB dataset in China using street view imagery and a geospatial artificial intelligence framework. First, intensive sampling is performed on the road network of each city based on OpenStreetMap, which is used as the georeference for downloading 6 x 10(6) Baidu Street View (BSV) images. Furthermore, considering the prior geographic knowledge contained in street view images, convolutional neural networks incorporating image context information (IC-CNNs) based on an ensemble learning strategy are developed to detect RNBs from the BSV images. The RNB dataset presented by polylines is generated based on the identified RNB locations, with a total length of 2667.02 km in 222 cities. Last, the quality of the RNB dataset is evaluated from two perspectives, i.e., the detection accuracy and the completeness and positional accuracy. Specifically, based on a set of randomly selected samples containing 10 000 BSV images, four quantitative metrics are calculated, with an overall accuracy of 98.61 %, recall of 87.14 %, precision of 76.44 %, and F-1 score of 81.44 %. A total length of 254.45 km of roads in different cities are manually surveyed using BSV images to evaluate the mileage deviation and overlap level between the generated and surveyed RNBs. The root mean squared error for the mileage deviation is 0.08 km, and the intersection over union for overlay level is 88.08% +/- 2.95 %. The evaluation results suggest that the generated RNB dataset is of high quality and can be applied as an accurate and reliable dataset for a variety of large-scale urban studies, such as estimating the regional solar photovoltaic potential, developing 3D urban models, and designing rational urban layouts. Besides that, the benchmark dataset of the labeled BSV images can also support more work on RNB detection, such as developing more advanced deep learning algorithms, fine-tuning the existing computer vision models, and analyzing geospatial scenes in BSV. The generated vectorized RNB dataset and the benchmark dataset of labeled BSV imagery are publicly available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021).

Place, publisher, year, edition, pages
Copernicus GmbH , 2022. Vol. 14, no 9, p. 4057-4076
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-318188DOI: 10.5194/essd-14-4057-2022ISI: 000850260100001Scopus ID: 2-s2.0-85139936467OAI: oai:DiVA.org:kth-318188DiVA, id: diva2:1696398
Note

QC 20220916

Available from: 2022-09-16 Created: 2022-09-16 Last updated: 2023-06-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Yan, Jinyue

Search in DiVA

By author/editor
Yan, Jinyue
By organisation
Energy Processes
In the same journal
Earth System Science Data
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf