kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Targeted Proteomics Using Stable Isotope Labeled Protein Fragments Enables Precise and Robust Determination of Total Apolipoprotein(a) in Human Plasma
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0001-8947-2562
AstraZeneca, Gothenburg, Sweden. (Translational Science and Experimental Medicine, Cardiovascular, Renal and Metabolism, IMED Biotech Unit)
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.ORCID iD: 0000-0002-5248-8568
AstraZeneca, Gothenburg, Sweden. (Translational Science and Experimental Medicine, Cardiovascular, Renal and Metabolism, IMED Biotech Unit)
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Lipoprotein(a), also known as Lp(a), is an LDL-like particle composed of apolipoprotein(a) (apo(a)) bound covalently to apolipoprotein B100. Plasma concentrations of Lp(a) are highly heritable and vary widely between individuals. Elevated plasma concentration of Lp(a) is considered as an independent, causal risk factor of cardiovascular disease (CVD). Targeted mass spectrometry (LC-SRM/MS) combined with stable isotope-labeled recombinant proteins provides robust and precise quantification of proteins in the blood, making LC-SRM/MS assays appealing for monitoring plasma proteins for clinical implications. This study presents a novel quantitative approach, based on proteotypic peptides, to determine the absolute concentration of apo(a) from two microliters of plasma and qualified according to guideline requirements for targeted proteomics assays. After optimization, assay parameters such as linearity, lower limits of quantification (LLOQ), intra-assay variability (CV: 4.7%) and inter-assay repeatability (CV: 7.8%) were determined and the LC-SRM/MS results were benchmarked against a commercially available immunoassay. In summary, the measurements of an apo(a) single copy specific peptide and a kringle 4 specific peptide allows for the determination of molar concentration and relative size of apo(a) in individuals.

Keywords [en]
apolipoprotein(a) (apo(a)), apolipoproteins, quantification, stable isotope labeled recombinant protein fragment standard, liquid chromatography, tandem mass spectrometry
National Category
Biological Sciences
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-318202OAI: oai:DiVA.org:kth-318202DiVA, id: diva2:1696684
Note

QC 20220927

Available from: 2022-09-19 Created: 2022-09-19 Last updated: 2023-12-07Bibliographically approved
In thesis
1. Development of novel affinity enrichment strategies for clinical applications using selected reaction monitoring
Open this publication in new window or tab >>Development of novel affinity enrichment strategies for clinical applications using selected reaction monitoring
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Proteins are key components of any living organism and an essential part of life itself. They can provide cells with structure and perform life-sustaining intracellular reactions. As organisms grow more complex, this task expands even further. The proteins’ areas of responsibility suddenly also include communication and coordination between cells and throughout entire organisms, such as the human body. Everything that can be touched and felt on a living organism is composed of millions and millions of proteins tightly packed together. They are even the molecules responsible for propagating the signals that make up the sense of feeling. Understanding the role of proteins in the complex system of life is essential for understanding what makes up a healthy human and what causes disease. This knowledge makes up the foundation of modern medicine, and to further this knowledge, allowing for new treatments and preventative interventions, the study of proteins is crucial. The large-scale study of proteins, proteomics, is an extensive field of research where a vast toolbox of technologies has been implemented. The foundation for this toolbox is made up of mass spectrometry- and affinity-based technologies.

In this thesis, both mass spectrometry-based proteomics and affinity-based proteomics will be explored. The first part, Paper I and Paper II, describe the use of selected reaction monitoring for measuring proteins of clinical relevance in human blood plasma. The second part, Paper III and Paper IV, highlight the importance of validating reagents used for affinity-based proteomics and how this can be achieved in a high throughput manner. Lastly, Paper V showcases how a combined strategy, relying on both affinity-based proteomics and mass spectrometry-based proteomics, can capitalize on the best properties of each technology and how this combined strategy can even be utilized for diagnostic purposes.

Abstract [sv]

Proteiner är livsviktiga molekyler som både förser celler med struktur och utför diverse reaktioner och uppgifter som håller cellerna vid liv. Ju mer komplex en organism är, desto svårare blir proteinernas uppgifter. I en organism som består av flera celler, såsom människor och djur, räcker det inte längre att varje cell sköter sina reaktioner och undertaganden separat, utan alla sådana processer måste koordineras. Denna koordinering utförs också av proteinerna. Proteinerna utgör en så stor del av livet att om du rör vid något levande så är det i regel proteiner som bygger upp den yta du känner. De är till och med så tätt ordnade att varje liten cell består av miljoner och åter miljoner proteiner. Inte nog med detta. Att du ens kan känna att du tar på en annan varelse eller föremål är också något som proteiner ser till. De ansvarar för att föra vidare signalerna från handen till hjärnan och att du sedan uppfattar detta som ett föremål. Det är därför inte förvånande att man måste förstå proteinernas uppgifter i alla möjliga situationer för att kunna veta hur en frisk människa fungerar och därmed avgöra när någon är sjuk. Detta ligger till grund för hela medicinfältet. För att kunna komma på nya behandlingar och för att rentav kunna förebygga sjukdomar är det nödvändigt att ha så mycket kunskap som möjligt om hur proteiner fungerar. Att studera proteiner i stor skala brukar kallas för proteomik och detta område har utvecklats något oerhört de senaste årtionden och det finns en mängd olika tekniker för att undersöka proteiner på. De flesta av dessa tekniker bygger dock på två huvudområden: masspektrometri och affinitetsreagens.

I den här avhandlingen har båda dessa områden utforskats. Den första delen av avhandlingen, som utgörs av Artikel I och Artikel II, bygger på masspektrometri. Här används så kallad riktad proteomik för att mäta proteinnivåerna av kliniska markörer i blodplasma. I del två, som utgörs av Artikel III och Artikel IV, undersöks istället affinitetsreagens och hur man kan försäkra sig om att de binder till de protein som man tror att de binder till i en stor skala. Slutligen kombineras båda dessa två områden i Artikel V och används för att undersöka förekomsten av SARS-CoV-2 i en asymtomatisk grupp människor.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 91
Series
TRITA-CBH-FOU ; 2022:47
Keywords
proteomics, mass spectrometry, selected reaction monitoring, absolute quantification, antibody validation, precision medicine
National Category
Biochemistry Molecular Biology Medical and Health Sciences Pharmaceutical and Medical Biotechnology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-318308 (URN)978-91-8040-357-3 (ISBN)
Public defence
2022-10-14, Gradängsalen, Teknikringen 1, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 2022-09-20

Available from: 2022-09-20 Created: 2022-09-20 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

abstract(53 kB)56 downloads
File information
File name COVER01.pdfFile size 53 kBChecksum SHA-512
8d3b2c8d3b0ab60f9514b43b2d26586ad32405a5a496d854de10419e43bae5610952357cc9d930e56a7178365cb2ab7e64f016697ba2cdd668318dfe33d13aae
Type coverMimetype application/pdf

Authority records

Hober, AndreasForsström, BjörnKotol, DavidUhlén, MathiasEdfors, Fredrik

Search in DiVA

By author/editor
Hober, AndreasForsström, BjörnKotol, DavidUhlén, MathiasEdfors, Fredrik
By organisation
Protein ScienceScience for Life Laboratory, SciLifeLab
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 243 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf