kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of an enhanced antibody-validation strategy for Western blot applications based on migration pattern recognition
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0001-8947-2562
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.ORCID iD: 0000-0001-5386-5460
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-0257-7554
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.ORCID iD: 0000-0002-0064-4776
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The use of affinity reagents, such as antibodies, for studying specific molecules in complex backgrounds are some of the most powerful tools for researchers in molecular biology. However, all experiments performed using affinity reagents are directly affected by each reagent’s context-dependent ability to bind specifically to a target of interest. A growing issue with non-validated, or poorly validated affinity reagents, has been highlighted by the International Working Group for Antibody Validation (IWGAV). It has been suggested that antibodies should be evaluated in an application-specific manner since they can perform well in one application but fail to deliver reproducible results in another. One of the most commonly used antibody-based applications is the Western blot (WB) technology. When evaluating the result from a WB experiment, the initial measure used for determining whether or not the antibody binds the protein of interest is to determine the molecular weight of the protein detected by the antibody compared to a set of reference proteins. As WB relies on the SDS-PAGE for separating differently sized proteins, the comparison is actually based on protein migration during electrophoresis. It is, however, well known that the migration of a protein can differ significantly from how the reference proteins migrate. Here, we suggest a method for determining the actual migration patterns of proteins instead of relying on the theoretical molecular weight of the protein. Using this approach, called migration capture mass spectrometry (MS), a dataset containing the migration patterns of more than 39,000 protein products from more than 10,500 genes across eleven cell lines and tissues has been created. This migration capture MS approach has been validated using k-fold cross validation against 249 siRNA knockdown WBs showing that the method has a sensitivity of 96.4%, specificity of 87.4% and accuracy of 91.9%, which makes the dataset a useful resource that can facilitate antibody validation strategies in a fit-for-purpose manner. The data set has allowed the automatic evaluation of more than 12,000 antibodies in the Human Protein Atlas using the method.

Keywords [en]
antibody validation, Western blot, SDS-PAGE, mass spectrometry, gel electrophoresis, proteomics
National Category
Biological Sciences
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-318304OAI: oai:DiVA.org:kth-318304DiVA, id: diva2:1696981
Note

QC 20220927

Available from: 2022-09-19 Created: 2022-09-19 Last updated: 2023-12-07Bibliographically approved
In thesis
1. Development of novel affinity enrichment strategies for clinical applications using selected reaction monitoring
Open this publication in new window or tab >>Development of novel affinity enrichment strategies for clinical applications using selected reaction monitoring
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Proteins are key components of any living organism and an essential part of life itself. They can provide cells with structure and perform life-sustaining intracellular reactions. As organisms grow more complex, this task expands even further. The proteins’ areas of responsibility suddenly also include communication and coordination between cells and throughout entire organisms, such as the human body. Everything that can be touched and felt on a living organism is composed of millions and millions of proteins tightly packed together. They are even the molecules responsible for propagating the signals that make up the sense of feeling. Understanding the role of proteins in the complex system of life is essential for understanding what makes up a healthy human and what causes disease. This knowledge makes up the foundation of modern medicine, and to further this knowledge, allowing for new treatments and preventative interventions, the study of proteins is crucial. The large-scale study of proteins, proteomics, is an extensive field of research where a vast toolbox of technologies has been implemented. The foundation for this toolbox is made up of mass spectrometry- and affinity-based technologies.

In this thesis, both mass spectrometry-based proteomics and affinity-based proteomics will be explored. The first part, Paper I and Paper II, describe the use of selected reaction monitoring for measuring proteins of clinical relevance in human blood plasma. The second part, Paper III and Paper IV, highlight the importance of validating reagents used for affinity-based proteomics and how this can be achieved in a high throughput manner. Lastly, Paper V showcases how a combined strategy, relying on both affinity-based proteomics and mass spectrometry-based proteomics, can capitalize on the best properties of each technology and how this combined strategy can even be utilized for diagnostic purposes.

Abstract [sv]

Proteiner är livsviktiga molekyler som både förser celler med struktur och utför diverse reaktioner och uppgifter som håller cellerna vid liv. Ju mer komplex en organism är, desto svårare blir proteinernas uppgifter. I en organism som består av flera celler, såsom människor och djur, räcker det inte längre att varje cell sköter sina reaktioner och undertaganden separat, utan alla sådana processer måste koordineras. Denna koordinering utförs också av proteinerna. Proteinerna utgör en så stor del av livet att om du rör vid något levande så är det i regel proteiner som bygger upp den yta du känner. De är till och med så tätt ordnade att varje liten cell består av miljoner och åter miljoner proteiner. Inte nog med detta. Att du ens kan känna att du tar på en annan varelse eller föremål är också något som proteiner ser till. De ansvarar för att föra vidare signalerna från handen till hjärnan och att du sedan uppfattar detta som ett föremål. Det är därför inte förvånande att man måste förstå proteinernas uppgifter i alla möjliga situationer för att kunna veta hur en frisk människa fungerar och därmed avgöra när någon är sjuk. Detta ligger till grund för hela medicinfältet. För att kunna komma på nya behandlingar och för att rentav kunna förebygga sjukdomar är det nödvändigt att ha så mycket kunskap som möjligt om hur proteiner fungerar. Att studera proteiner i stor skala brukar kallas för proteomik och detta område har utvecklats något oerhört de senaste årtionden och det finns en mängd olika tekniker för att undersöka proteiner på. De flesta av dessa tekniker bygger dock på två huvudområden: masspektrometri och affinitetsreagens.

I den här avhandlingen har båda dessa områden utforskats. Den första delen av avhandlingen, som utgörs av Artikel I och Artikel II, bygger på masspektrometri. Här används så kallad riktad proteomik för att mäta proteinnivåerna av kliniska markörer i blodplasma. I del två, som utgörs av Artikel III och Artikel IV, undersöks istället affinitetsreagens och hur man kan försäkra sig om att de binder till de protein som man tror att de binder till i en stor skala. Slutligen kombineras båda dessa två områden i Artikel V och används för att undersöka förekomsten av SARS-CoV-2 i en asymtomatisk grupp människor.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 91
Series
TRITA-CBH-FOU ; 2022:47
Keywords
proteomics, mass spectrometry, selected reaction monitoring, absolute quantification, antibody validation, precision medicine
National Category
Biochemistry Molecular Biology Medical and Health Sciences Pharmaceutical and Medical Biotechnology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-318308 (URN)978-91-8040-357-3 (ISBN)
Public defence
2022-10-14, Gradängsalen, Teknikringen 1, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 2022-09-20

Available from: 2022-09-20 Created: 2022-09-20 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

abstract(131 kB)64 downloads
File information
File name COVER01.pdfFile size 131 kBChecksum SHA-512
fb7ff41969dea32727bd1bdaae70be7799c91cc78f0c9ad1d7abe855210753351c419acb7427b33d57832dc959fd0249ae4a55827c7fc68b88241e49c5ced6e8
Type coverMimetype application/pdf

Authority records

Hober, AndreasStrandberg, Linnéavon Feilitzen, KalleZwahlen, MartinKotol, DavidForsström, BjörnTegel, HannaUhlén, MathiasEdfors, Fredrik

Search in DiVA

By author/editor
Hober, AndreasStrandberg, Linnéavon Feilitzen, KalleZwahlen, MartinKotol, DavidForsström, BjörnTegel, HannaUhlén, MathiasEdfors, Fredrik
By organisation
Protein ScienceScience for Life Laboratory, SciLifeLabProtein Technology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 251 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf