kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polar Codes for Biometric Identification Systems
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Polära Koder för Biometriska Identifieringssystem (Swedish)
Abstract [en]

Biometrics are widely used in identification systems, such as face, fingerprint, iris, etc. Polar code is the only code that can be strictly proved to achieve channel capacity, and it has been proved to be optimal for channel and source coding. In this degree project, our goal is to apply polar codes algorithms to biometric identification systems, and to design a biometric identification system with high identification accuracy, low system complexity, and good privacy preservation. This degree project has carried out specific and in-depth research in four aspects, following results are achieved: First, idea of polar codes is learnt, for example channel combination, channel splitting, successive cancellation decoding. The successive cancellation and successive cancellation list algorithm are also applied to encoding, which further realizes polar codes for source coding. Second, using autoencoder to process biometrics. Autoencoder is introduced to compress fingerprints into binary sequences of length 1024, it has 5 encoding layers and 12 decoding layers, achieved reconstruction error is 0.03. The distribution is close to Gaussian distribution, and compressed codes are quantized into binary sequences. Properties of sequences are similar with random sequences in terms of entropy, correlation, variance. Third, the identification system under Wyner-Ziv problem is studied with fingerprints. In enrollment phase, encoding algorithms are designed to compress biometrics, and in identification phase, decoding algorithms are designed to estimate the original sequence based on decoded results and noisy sequence. Maximum mutual information method is used to identify users. Results show that with smaller number of users, longer code length, smaller noise, then recognition error rate is lower. Fourth, human faces are used in the generated secret key system. After fully considering the trade off to achieve optimal results, in enrollment phase both public data and secure data are generated, in identification phase user’s index and secret key are estimated. A hierarchical structure is further studied. First, CNN is used to classify the age of faces, and then the generated secret key system is used for identification after narrowing the range. The system complexity is reduced by 80% and the identification accuracy is not reduced.

Abstract [sv]

Biometriska kännetecken används i stor utsträckning i identifieringssystem, kännetecken såsom ansikte, fingeravtryck, iris, etc. Polär kod är den enda koden som strikt bevisats uppnå kanalkapacitet och den har visat sig vara optimal för kanal- och källkodning. Målet med detta examensarbete är att tillämpa polära kodalgoritmer på biometriska identifieringssystem, och att designa ett biometriskt identifieringssystem med hög identifieringsnoggrannhet, låg systemkomplexitet och bra integritetsskydd. Under examensarbetet har det genomförts specifik och djupgående forskning i fyra aspekter, följande resultat har uppnåtts: För det första introduceras idén om polära koder, till exempel kanalkombination, kanaluppdelning, successiv annulleringsavkodning. Algoritmerna för successiv annullering och successiv annulleringslista tillämpas även på kodning,vilket ytterligare realiserar polära koders användning för källkodning. För det andra används autoencoder för att bearbeta biometriska uppgifter. Autoencoder introduceras för att komprimera fingeravtryck till binära sekvenser med längden 1024, den har 5 kodningslager och 12 avkodningslager, det uppnådda rekonstruktionsfelet är 0,03. Fördelningen liknar en normaldistribution och komprimerade koder kvantiseras till binära sekvenser. Egenskaperna för sekvenserna liknar slumpmässiga sekvenser vad gäller entropi, korrelation, varians. För det tredje studeras identifieringssystemet under Wyner-Ziv-problemet med fingeravtryck. I inskrivningsfasen är kodningsalgoritmer utformade för att komprimera biometriska kännetecken, och i identifieringsfasen är avkodningsalgoritmer utformade för att estimera den ursprungliga sekvensen baserat på avkodade resultat och brusiga sekvenser. Maximal ömsesidig informationsmetod används för att identifiera användare. Resultaten visar att med ett mindre antal användare, längre kodlängd och mindre brus så är identifieringsfelfrekvensen lägre. För det fjärde används mänskliga ansikten i det genererade hemliga nyckelsystemet. Efter att noggrant ha övervägt kompromisser fullt ut för att uppnå det optimala resultatet genereras både offentlig data och säker data under registreringsfasen, i identifieringsfasen uppskattas användarens index och säkerhetsnyckel. En hierarkisk struktur studeras vidare. Först används CNN för att klassificera ålder baserat på ansikten och sedan används det genererade hemliga nyckelsystemet för identifiering efter att intervallet har begränsats. Systemkomplexiteten reduceras med 80% men identifieringsnoggrannheten reduceras inte.

Place, publisher, year, edition, pages
2022. , p. 72
Series
TRITA-EECS-EX ; 2022:227
Keywords [en]
Biometrics, Polar codes, Identification systems, Convolutional neural networks, Autoencoder, Privacy preservation
Keywords [sv]
Biometri, Polära koder, Identifieringssystem, Konvolutionella neurala nätverk, Autoencoder, Sekretessskydd
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-318815OAI: oai:DiVA.org:kth-318815DiVA, id: diva2:1698078
Subject / course
Information Technology
Educational program
Master of Science - Information and Network Engineering
Supervisors
Examiners
Available from: 2022-09-23 Created: 2022-09-22 Last updated: 2022-09-23Bibliographically approved

Open Access in DiVA

fulltext(2857 kB)899 downloads
File information
File name FULLTEXT01.pdfFile size 2857 kBChecksum SHA-512
201514a0cc9ce9a569d59be63b14a14b4f4b1f0ba0ab7b4b5fcbb96297f99e362b3d66bc5c3c60fc89894a7f7066f5a617bf9af70438b0fa716496427c994ad4
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 900 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 397 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf