kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Statistical learning for fluid flows: Sparse Fourier divergence-free approximations
Rhein Westfal TH Aachen, Dept Math, Gebaude-1953 1-OG,Pontdriesch 14-16, D-52062 Aachen, Germany..
Rhein Westfal TH Aachen, Dept Math, Gebaude-1953 1-OG,Pontdriesch 14-16, D-52062 Aachen, Germany..
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.). H Ai AB, Box 5216, S-10245 Stockholm, Sweden..ORCID iD: 0000-0001-6061-3456
Rhein Westfal TH Aachen, Dept Math, Gebaude-1953 1-OG,Pontdriesch 14-16, D-52062 Aachen, Germany.;Rhein Westfal TH Aachen, Math Uncertainty Quantificat, Aachen, Germany.;King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia..
2021 (English)In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 33, no 9, article id 097108Article in journal (Refereed) Published
Abstract [en]

We reconstruct the velocity field of incompressible flows given a finite set of measurements. For the spatial approximation, we introduce the Sparse Fourier divergence-free approximation based on a discrete L & nbsp;projection. Within this physics-informed type of statistical learning framework, we adaptively build a sparse set of Fourier basis functions with corresponding coefficients by solving a sequence of minimization problems where the set of basis functions is augmented greedily at each optimization problem. We regularize our minimization problems with the seminorm of the fractional Sobolev space in a Tikhonov fashion. In the Fourier setting, the incompressibility (divergence-free) constraint becomes a finite set of linear algebraic equations. We couple our spatial approximation with the truncated singular-value decomposition of the flow measurements for temporal compression. Our computational framework thus combines supervised and unsupervised learning techniques. We assess the capabilities of our method in various numerical examples arising in fluid mechanics.

Place, publisher, year, edition, pages
AIP Publishing , 2021. Vol. 33, no 9, article id 097108
National Category
Computational Mathematics Mathematical Analysis Other Clinical Medicine
Identifiers
URN: urn:nbn:se:kth:diva-319014DOI: 10.1063/5.0064862ISI: 000751315100004Scopus ID: 2-s2.0-85115964211OAI: oai:DiVA.org:kth-319014DiVA, id: diva2:1699238
Note

QC 20220927

Available from: 2022-09-27 Created: 2022-09-27 Last updated: 2022-09-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Kiessling, Jonas

Search in DiVA

By author/editor
Kiessling, Jonas
By organisation
Mathematics (Dept.)
In the same journal
Physics of fluids
Computational MathematicsMathematical AnalysisOther Clinical Medicine

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf