kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assisted Annotation of Sequential Image Data With CNN and Pixel Tracking
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2021 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Assisterande annotering av sekvensiell bilddata med CNN och pixelspårning (Swedish)
Abstract [en]

In this master thesis, different neural networks have investigated annotating objects in video streams with partially annotated data as input. Annotation in this thesis is referring to bounding boxes around the targeted objects. Two different methods have been used ROLO and GOTURN, object detection with tracking respective object tracking with pixels. The data set used for validation is surveillance footage consists of varying image resolution, image size and sequence length. Modifications of the original models have been executed to fit the test data. 

Promising results for modified GOTURN were shown, where the partially annotated data was used as assistance in tracking. The model is robust and provides sufficiently accurate object detections for practical use. With the new model, human resources for image annotation can be reduced by at least half.

Abstract [sv]

I detta examensarbete har olika neurala nätverk undersökts för att annotera objekt i videoströmmar med partiellt annoterade data som indata. Annotering i denna uppsats syftar på avgränsninglådor runt de eftertraktade objekten. Två olika metoder har använts ROLO och GOTURN, objektdetektering med spårning respektive objektspårning av pixlar. Datasetet som användes för validering är videoströmmar från övervakningskameror i varierande bildupplösning, bildstorlek och sekvenslängd. Modifieringar av ursprungsmodellerna har utförts för att anpassa testdatat.

Lovande resultat för modifierade GOTURN visades, där den partiella annoterade datan användes som assistans vid spårning. Modellen är robust och ger tillräckligt noggranna objektdetektioner för praktiskt bruk. Med den nya modellen kan mänskliga resurser för bild annotering reduceras med minst hälften.

Place, publisher, year, edition, pages
2021. , p. 63
Series
TRITA-SCI-GRU ; 2021:218
Keywords [en]
Assistant annotation, Object detection, Object tracking, Sequential data
Keywords [sv]
Assisterande annotering, Objectdetektering, Objektspårning, Sekventiell data
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-319365OAI: oai:DiVA.org:kth-319365DiVA, id: diva2:1699780
External cooperation
STANLEY Security Sverige
Subject / course
Mathematical Statistics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2022-09-29 Created: 2022-09-29 Last updated: 2022-09-29Bibliographically approved

Open Access in DiVA

fulltext(2492 kB)172 downloads
File information
File name FULLTEXT01.pdfFile size 2492 kBChecksum SHA-512
f100e1593a010d90a8eb525fb4f7942c8128a3e443ee4c07172c61ca168a70d5a03d5afa16de8d721d3d220cdf6bdd18726a805e0ea9779dacd989c699aea1df
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 172 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 307 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf