kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Credit Scoring Based on Behavioural Data
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Kreditvärdering baserat på beteendedata (Swedish)
Abstract [en]

Credit modelling has traditionally been done by credit institutes based on financial data about the individuals requesting the credit. While this has been sufficient in lowering risk in developed economies with plenty of financial data it is inefficient in developing economies and fails to reach the unbanked population. As this is both limiting many responsible consumers from getting access to credit as well as limiting companies from reaching paying customers, it is evident that new strategies for credit modelling are needed. This paper explores the usage of behavioural data for credit modelling gathered from users of Klarna’s app. The models are based on the machine learning algorithms logistic regression, random forests, neural networks, and gradient boosted decision trees. In this study, models were trained on Swedish data in multiple timespans and tested in different timespans and countries. The results show that modelling on the data points developed in this study is effective and suggest that in certain cases be used in predicting new and unknown markets by training on similar markets.

Abstract [sv]

Kreditvärderingar har traditionellt sätt utförts av kreditinstitut baserat på existerande finansiella data kring personen i fråga som ansöker om kredit. Denna metod har varit framgångsrik i att minimera risk inom utvecklade ekonomier där finansiella data har varit tillgänglig. Metoden har varit mindre framgångsrik i utvecklingsekonomier och misslyckas att utvärdera befolkningar som saknar finansiella tjänster. Då detta problem begränsar många pålitliga konsumenter att få tillgång till kredit och samtidigt begränsar företagen att nå ut till möjliga betalande kunder, blir det viktigt att ta fram nya strategier för att utvärdera kredit. Denna uppsats utforskar möjligheten att modellera kreditvärdighet baserat på användarbeteende med hjälp av data från Klarnas shopping app. Modellerna är baserade på maskininlärningsalgoritmerna logistisk regression, Random Forests, neurala nätverk och gradient boosted decision trees. I denna studie tränas modellerna på olika tidsspann inom den svenska marknaden och testas på olika tidsspann och marknader. Resultaten från studien visar att det går med hjälp av beteende data från Klarnas app att, under olika omständigheter, förutspå kreditvärdighet i framtiden och på olika marknader.

Place, publisher, year, edition, pages
2022. , p. 10
Series
TRITA-EECS-EX ; 2022:327
Keywords [en]
Banking, Behavior, Behaviour, Credit Modelling, Klarna, Logistic Regression, Machine Learning, Neural Networks, Random Forests, XGBoost
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-319512OAI: oai:DiVA.org:kth-319512DiVA, id: diva2:1700274
Supervisors
Examiners
Available from: 2022-10-03 Created: 2022-09-30 Last updated: 2022-10-03Bibliographically approved

Open Access in DiVA

fulltext(805 kB)1798 downloads
File information
File name FULLTEXT01.pdfFile size 805 kBChecksum SHA-512
28eb6e9c5a6779c5b2b1bae566b49dae17f252d241e8255f7065af717198c6201f63f8e7e632a67d1d8130f06e680498b59c39296634cfa93de207b7bd2e5111
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1798 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 715 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf