A fully metallic leaky-wave antenna (LWA) with enhanced scanning rate is presented. The leaky waveguide is implemented in groove gap waveguide technology and is periodically loaded to produce backward radiation. Furthermore, glide-symmetric pins are placed inside the leaky waveguide to increase the dispersion. A parallel-plate waveguide metasurface prism lens is used to disperse the backward radiation and increase the scanning rate of the LWA. The designed antenna can steer the radiation from -26 degrees to 26 degrees from 27 to 35 GHz, and an average total efficiency of 74% is achieved. A prototype of the designed antenna is manufactured, and measurements corroborate the simulated results. The proposed concept is applicable to other frequency-scanning antennas and can be used to increase the scanning rate in radar and imaging systems.
QC 20220930