kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Impact of Noise when Decoding Information in Highly Curved Neuronal Encoding Manifolds
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science.
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science.
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Påverkan av brus på avkodningsförmåga hos kraftigt böjda kodningsmångfalder (Swedish)
Abstract [en]

Noise is an important aspect in neuronal population coding. The type of noise a population is affected by may impact which properties of neurons are optimal. For this report we simulate decoding in neuronal populations affected by different types of noise. In particular, the effect of the amount of peaks in neuronal tuning curves on decoding performance is studied. The features of noise that are investigated include strength and correlation. We found that highly correlated noise considerably mitigates the negative effect of large amounts of noise. Additionally, in high noise environments, neurons with more peaks in their tuning curves are affected more negatively by noise. Our research provides a possible explanation for why certain neurons in the brain behave as they do, and we propose several avenues for future study.

Abstract [sv]

Brus är en viktig aspekt i populationskodning hos neuroner. Typen av brus som populationen påverkas av kan avgöra vilka egenskaper som är optimala hos neuronerna. I den här rapporten simulerar vi avkodning hos neuronpopulationer som påverkas av olika sorters brus. Specifikt undersöks effekten av antalet toppar i neuroners aktivitet på neuronpopulationens totala avkodningsförmåga. De egenskaper för brus som undersöks är styrka och korrelation. Våra resultat visar att högt korrelerat brus till stor del minskar de negativa effekterna av stora mängder brus. Dessutom blir neuronpopulationer med fler toppar i dess aktivitet i högre grad negativt påverkade av stora mängder brus. Dessa resultat kan ge en förklaring till varför särskilda neuroner i hjärnan beter sig som de gör, och vi föreslår flera tillvägagångsätt för fortsatta studier inom området.

Place, publisher, year, edition, pages
2022. , p. 42
Series
TRITA-EECS-EX ; 2022:450
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-319526OAI: oai:DiVA.org:kth-319526DiVA, id: diva2:1700457
Subject / course
Computer Science
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2022-10-05 Created: 2022-10-01 Last updated: 2022-10-05Bibliographically approved

Open Access in DiVA

fulltext(7047 kB)452 downloads
File information
File name FULLTEXT01.pdfFile size 7047 kBChecksum SHA-512
d4ad6e0d4832f965c3b85d82839c19e5c009a1831dff9ef093f9bfd909ee44b6d531f4e0417daa5cf84fc94f6261307d0330646948750cb9dfaa1e4402a844ad
Type fulltextMimetype application/pdf

By organisation
Computer Science
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 452 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1321 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf