kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integrated Cellulosic Wood Aerogel Structures
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Royal Institute of Technology (KTH).ORCID iD: 0000-0002-1029-6912
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Highly porous aerogels based on renewable materials that possess structural functionality are appealing for sustainable energy regulation and harvesting. Achieving structural anisotropy provides advantageous directional diffusion and mechanical strength, however, introduces great engineering challenges, such as complex, costly, and time-consuming processing. Direct use of wood, where nanocellulose is favorably orientated, offers the opportunity of forming low-cost, scalable, and eco-friendly aerogels.

This thesis explores a new type of nanostructured wood material design by filling the empty wood space with cellulosic aerogel structures based on its intrinsic biopolymers. The structure control is achieved through selective reassembly of the cell wall nanocomponents by cell wall partial dissolution and regeneration. The resultant structures, named integrated wood aerogels, show a unique combination of high specific surface area and strength due to partial retention of the wood hierarchical structure and formation of mesoporous nanofibrillated networks occupying the lumen. Different chemical systems are investigated, including DMAc/LiCl, ionic liquid (IL), and aqueous NaOH, and the processing-structure-property relationships are investigated. DMAc/LiCl is successfully used as proof of concept for integrated wood aerogel formation, but moisture sensitivity and toxicity of the system hinder further development. The IL [MTBD][MMP] is developed to solve the issues and to improve the structure control in cell wall dissolution and regeneration. An aqueous NaOH system advances the integrated cellulosic wood aerogel preparation further, considering low cost and greener chemistry. Wood composition, lignin in particular, is critical to the processing and final properties of the integrated wood aerogel. The influence of lignin content is investigated based on IL and NaOH systems. The influence of processing (such as chemical system, time and temperature) on the structure and properties (e.g. porosity, specific surface area, mechanical performance, thermal conductivity and charge density) of the aerogels are studied. 

Ascribing to the structure-property profile, the application of the integrated aerogel for efficient thermal insulation is demonstrated. Inspired by the water uptake in plants, high-performing pH-responsive wood power generators are formed based on water evaporation-induced electricity. The integrated aerogel structure greatly increases the solid/liquid interphase while allowing excellent mass diffusion.

The methodologies presented in this thesis for selective nanoscale reassembly of the wood cell wall pave the way for advanced wood nanostructure control. The integrated wood aerogel structure reported here provides a universal material platform for advanced material design, such as a self-sustaining wood power generator. The facile and scalable processing contribute toward sustainable high-performing bioaerogels which can compete with fossil-based materials.

Abstract [sv]

Högporösa aerogeler baserade på förnybara material med strukturell funktionalitet är attraktiva för hållbar energireglering och energiutvinning. Strukturell anisotropi har potential att ge dessa material fördelaktiga diffusiva och mekaniska egenskaper, men framställning av ordnade strukturer kräver mer kostsamma och tidskrävande processer. Direkt användning av trä, där nanocellulosa redan är gynnsamt orienterad ger möjlighet att framställa billiga, skalbara och miljövänliga aerogeler.

I den här avhandlingen utforskas en ny typ av nanostrukturerade trämaterial skapade genom att fylla det tomma utrymmet i trä med aerogelstrukturer baserade på cellväggens egna biopolymerer. Strukturen kan kontrolleras genom att selektivt återuppbygga nanokomponenterna i cellväggen genom partiell upplösning och utfällning. De erhållna strukturerna, här benämnda integrerade träaerogeler, uppvisar en unik kombination av hög ytarea och styrka på grund av att träets hierarkiska struktur delvis bibehålls och att mesoporösa nätverk av nanofibriller bildas i lumen. Olika kemiska system undersöks, bland annat DMAc/LiCl, jonvätska och vattenbaserad NaOH, och förhållandet mellan framställning, struktur och egenskaper undersöks. DMAc/LiCl används med framgång för att visa det integrerade träaerogelkonceptets gångbarhet, men systemets fuktkänslighet och toxicitet hämmar fortsatt utveckling. Jonvätskan [MTBD][MMP] utvecklades för att underlätta processen och för att förbättra strukturkontrollen vid upplösning och utfällning av cellväggens komponenter. Ett vattenbaserat NaOH-system förbättrade framställningen av integrerade träaerogeler ytterligare, speciellt med avseende på lägre kostnad och miljövänligare kemi. Träets sammansättning, särskilt lignin, är avgörande för framställningen och för de integrerade träaerogelernas egenskaper. Lignininnehållets inverkan undersöks utifrån jonvätska- och NaOH-systemen. Framställningsparametrars (t.ex. kemiskt system, tid och temperatur) inverkan på aerogelens struktur och egenskaper (t.ex. porositet, specifik yta, mekanisk prestanda, värmeledningsförmåga och laddningstäthet) studeras.

Med de erhållna strukturegenskaperna kunde de integrerade träaerogelerna användas för effektiv värmeisolering och  med inspiration av den naturliga vattenledningsförmågan i träd designades högpresterande och pH-responsiva kraftgeneratorer. Den integrerade aerogelstrukturen ökade interaktionen mellan trämaterialet och vätskan samtidigt som den möjliggjorde bättre vätsketransport.

Metoderna som presenteras i den här avhandlingen visar en ny strategi för avancerad kontroll av träets nanostruktur genom selektiv återuppbyggnad av träets cellvägg. Den träbaserade aerogelstrukturen som uppvisas här utgör en helt biobaserad materialplattform för avancerad materialdesign. Den enkla och skalbara framställningen från trä bidrar i hög grad till hållbara och högpresterande bioaerogeler som kan konkurrera med fossilbaserade material.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 85
Series
TRITA-CBH-FOU ; 2022:49
Keywords [en]
Aerogel, cellulose, energy harvesting, ionic liquids, nanotechnology, wood, thermal insulation
National Category
Paper, Pulp and Fiber Technology Polymer Technologies Composite Science and Engineering
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-319629ISBN: 978-91-8040-360-3 (print)OAI: oai:DiVA.org:kth-319629DiVA, id: diva2:1701075
Public defence
2022-10-28, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2022-10-05

Available from: 2022-10-05 Created: 2022-10-04 Last updated: 2023-10-28Bibliographically approved
List of papers
1. Top-Down Approach Making Anisotropic Cellulose Aerogels as Universal Substrates for Multifunctionalization
Open this publication in new window or tab >>Top-Down Approach Making Anisotropic Cellulose Aerogels as Universal Substrates for Multifunctionalization
Show others...
2020 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 14, no 6, p. 7111-7120Article in journal (Refereed) Published
Abstract [en]

Highly porous, strong aerogels with anisotropicstructural properties are of great interest for multifunctionalmaterials for applications including insulators in buildings,filters for oil cleanup, electrical storage devices,etc. Contem-porary aerogels are mostly extracted from fossil resources andsynthesized from bottom-up techniques, often requiring addi-tional strategies to obtain high anisotropy. In this work, auniversal approach to prepare porous, strong, anisotropicaerogels is presented through exploiting the natural hierarchicaland anisotropic structure of wood. The preparation comprisesnanoscale removal of lignin, followed by dissolution−regener-ation of nanofibers, leading to enhanced cell wall porosity with nanofibrillated networks occupying the pore space in thecellular wood structure. The aerogels retain structural anisotropy of natural wood, exhibit specific surface areas up to 247 m2/g, and show high compression strength at 95% porosity. This is a record specific area value for wood aerogels/foams and evenhigher than most cellulose-based aerogels for its assigned strength. The aerogel can serve as a platform for multifunctionalcomposites including scaffolds for catalysis, gas separation, or liquid purification due to its porous matrix or as binder-freeelectrodes in electronics. To demonstrate the multifunctionality, the aerogels are successfully decorated with metalnanoparticles (Ag) and metal oxide nanoparticles (TiO2)byin situsynthesis, coated by the conductive polymer(PEDOT:PSS), and carbonized to yield conductive aerogels. This approach is found to be a universal way to prepare highlyporous anisotropic aerogels.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2020
National Category
Composite Science and Engineering Polymer Chemistry Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-280905 (URN)10.1021/acsnano.0c01888 (DOI)000543744100071 ()32413254 (PubMedID)2-s2.0-85087096064 (Scopus ID)
Funder
EU, European Research Council, 742733Swedish Research Council, 2017-05349
Note

QC 20200918

Available from: 2020-09-15 Created: 2020-09-15 Last updated: 2022-10-04Bibliographically approved
2. Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation
Open this publication in new window or tab >>Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation
Show others...
2022 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 14, no 21, p. 24697-24707Article in journal (Refereed) Published
Abstract [en]

Eco-friendly materials with superior thermal insulation and mechanical properties are desirable for improved energy- and space-efficiency in buildings. Cellulose aerogels with structural anisotropy could fulfill these requirements, but complex processing and high energy demand are challenges for scaling up. Here we propose a scalable, nonadditive, top-down fabrication of strong anisotropic aerogels directly from wood with excellent, near isotropic thermal insulation functions. The aerogel was obtained through cell wall dissolution and controlled precipitation in lumen, using an ionic liquid (IL) mixture comprising DMSO and a guanidinium phosphorus-based IL [MTBD][MMP]. The wood aerogel shows a unique structure with lumen filled with nanofibrils network. In situ formation of a cellulosic nanofibril network in the lumen results in specific surface areas up to 280 m2/g and high yield strengths >1.2 MPa. The highly mesoporous structure (average pore diameter ∼20 nm) of freeze-dried wood aerogels leads to low thermal conductivities in both the radial (0.037 W/mK) and axial (0.057 W/mK) directions, showing great potential as scalable thermal insulators. This synthesis route is energy efficient with high nanostructural controllability. The unique nanostructure and rare combination of strength and thermal properties set the material apart from comparable bottom-up aerogels. This nonadditive synthesis approach is believed to contribute significantly toward large-scale design and structure control of biobased aerogels.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2022
Keywords
aerogel wood ionic liquid thermal insulation sustainable materials
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-319624 (URN)10.1021/acsami.2c04584 (DOI)000821439200001 ()35511115 (PubMedID)2-s2.0-85130021718 (Scopus ID)
Funder
Swedish Research Council, No.2017-05349EU, European Research Council, No. 742733Knut and Alice Wallenberg Foundation
Note

QC 20221019

Available from: 2022-10-04 Created: 2022-10-04 Last updated: 2022-10-19Bibliographically approved
3. Strong, Shape-Memory Aerogel via Wood Cell Wall Nanoscale Reassembly
Open this publication in new window or tab >>Strong, Shape-Memory Aerogel via Wood Cell Wall Nanoscale Reassembly
Show others...
2023 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 17, no 5, p. 4775-4789Article in journal (Refereed) Published
Abstract [en]

Polymer shape-memory aerogels (PSMAs) are prospects in various fields of application ranging from aerospace to biomedicine, as advanced thermal insulators, actuators, or sensors. However, the fabrication of PSMAs with good mechanical performance is challenging and is currently dominated by fossil-based polymers. In this work, strong, shape-memory bio-aerogels with high specific surface areas (up to 220 m2/g) and low radial thermal conductivity (0.042 W/mK) were prepared through a one-step treatment of native wood using an ionic liquid mixture of [MTBD]+[MMP]−/DMSO. The aerogel showed similar chemical composition similar to native wood. Nanoscale spatial rearrangement of wood biopolymers in the cell wall and lumen was achieved, resulting in flexible hydrogels, offering design freedom for subsequent aerogels with intricate geometries. Shape-memory function under stimuli of water was reported. The chemical composition and distribution, morphology, and mechanical performance of the aerogel were carefully studied using confocal Raman spectroscopy, AFM, SAXS/WAXS, NMR, digital image correlation, etc. With its simplicity, sustainability, and the broad range of applicability, the methodology developed for nanoscale reassembly of wood is an advancement for the design of biobased shape-memory aerogels.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
Keywords
aerogel, cell wall reassembly, shape-memory, strong, wood
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-319625 (URN)10.1021/acsnano.2c11220 (DOI)000929142600001 ()36716432 (PubMedID)2-s2.0-85147305779 (Scopus ID)
Funder
Knut and Alice Wallenberg FoundationSwedish Research Council, 2017-05349
Note

QC 20230515

Available from: 2022-10-04 Created: 2022-10-04 Last updated: 2023-05-15Bibliographically approved
4. Advancing Hydrovoltaic Energy Harvesting from Wood through Cell Wall Nanoengineering
Open this publication in new window or tab >>Advancing Hydrovoltaic Energy Harvesting from Wood through Cell Wall Nanoengineering
Show others...
2023 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 33, p. 2208933-Article in journal (Refereed) Published
Abstract [en]

Converting omnipresent environmental energy through the assistance of spontaneous water evaporation is an emerging technology for sustainable energy systems. Developing bio-based hydrovoltaic materials further pushes the sustainability, where wood is a prospect due to its native hydrophilic and anisotropic structure. However, current wood-based water evaporation-assisted power generators are facing the challenge of low power density. Here, an efficient hydrovoltaic wood power generator is reported based on wood cell wall nanoengineering. A highly porous wood with cellulosic network filling the lumen is fabricated through a green, one-step treatment using sodium hydroxide to maximize the wood surface area, introduce chemical functionality, and enhance the cell wall permeability of water. An open-circuit potential of ≈140 mV in deionized water is realized, over ten times higher than native wood. Further tuning the pH difference between wood and water, due to an ion concentration gradient, a potential up to 1 V and a remarkable power output of 1.35 µW cm−2 is achieved. The findings in this study provide a new strategy for efficient wood power generators.

Keywords
cell wall nanoengineering, green chemistry, water evaporation, wood power generators
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-319626 (URN)10.1002/adfm.202208933 (DOI)000889903100001 ()2-s2.0-85142365851 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation, 742733Swedish Research Council, 2017‐05349
Note

QC 20230512

Available from: 2022-10-04 Created: 2022-10-04 Last updated: 2023-05-12Bibliographically approved

Open Access in DiVA

fulltext(20950 kB)590 downloads
File information
File name FULLTEXT01.pdfFile size 20950 kBChecksum SHA-512
6c7ba46d10bb8330c701198258c19770cdc1ee85d1d0c3f1e2f39170879196e3eff962739165ebf67c2986ffd2a89c07dfebd429790b99a0ebfa122686420896
Type fulltextMimetype application/pdf

Authority records

Garemark, Jonas

Search in DiVA

By author/editor
Garemark, Jonas
By organisation
BiocompositesWallenberg Wood Science Center
Paper, Pulp and Fiber TechnologyPolymer TechnologiesComposite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 592 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1084 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf