kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Coincident Fluorescence‐Burst Analysis of the Loading Yields of Exosome‐Mimetic Nanovesicles with Fluorescently‐Labeled Cargo Molecules
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.ORCID iD: 0000-0001-8661-6583
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.ORCID iD: 0000-0003-3252-694x
Department of Clinical Sciences Swedish University of Agricultural Sciences (SLU) Uppsala 75007 Sweden;Oblique Therapeutics AB Gothenburg 41346 Sweden.ORCID iD: 0000-0001-5885-8067
Department of Clinical Sciences Swedish University of Agricultural Sciences (SLU) Uppsala 75007 Sweden.ORCID iD: 0000-0002-5245-7331
Show others and affiliations
2022 (English)In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 18, no 12, p. 2106241-2106241Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Wiley , 2022. Vol. 18, no 12, p. 2106241-2106241
National Category
Biophysics
Identifiers
URN: urn:nbn:se:kth:diva-319727DOI: 10.1002/smll.202106241ISI: 000748617600001PubMedID: 35084110Scopus ID: 2-s2.0-85123708519OAI: oai:DiVA.org:kth-319727DiVA, id: diva2:1701670
Funder
Knut and Alice Wallenberg FoundationKnut and Alice Wallenberg FoundationSwedish Research Council, 2018‐04487
Note

QC 20221011

Available from: 2022-10-06 Created: 2022-10-06 Last updated: 2024-01-05Bibliographically approved
In thesis
1. Advanced fluorescence-based fluctuation methods for biosensing
Open this publication in new window or tab >>Advanced fluorescence-based fluctuation methods for biosensing
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In addition to use traditional fluorescence parameters for biological studies,the main focus of this thesis is on the monitoring of photoinduced fluorophoretransient states. These dark states, such as the triplet state, redox states andphotoisomers that are formed upon excitation, are long-lived in comparisonto the fluorescent singlet state and therefor more sensitive to the surroundingenvironment and their sensitivity are to biological relevant conditions. Themain method used to study these states is called transient state monitoring(TRAST) and based on laser-modulation over the sample. Different modalities using this approach, are explored to characterize blinking kinetics offluorophores in varying contexts. A multiparameter confocal laser-scanningsetup with TCSPC and correlation capabilities is used as a complement to thementioned method and used solely in one of the works. It is motivated howthe transient states adds dimensions of information. They can with advantagebe used as an additional fluorescence read-out in imaging and spectroscopicstudies of fluorophore tagged biological samples.

In paper I, the autofluorescent co-enzyme NAD(P)H was studied byTRAST, showing a redox sensitivity. A two-photon excitation (2PE) scanning TRAST approach was established. With this label-free approach, cellular images reflecting local redox environments could be obtained and visualizechanges in the environment after disturbing the cellular metabolism.

In paper II, single-molecule confocal TCSPC with pulsed interleavedexcitation and burst-analysis was used to study loading yields of exosomemimetic nanovesicles.

In paper III, the photodynamics of two dyes used in photodynamic therapy (PDT) were characterized. It was motivated how TRAST can be used asa method for live-monitoring in PDT and be used as feed-back to optimizetreatment. A fiber-based TRAST approach was demonstrated and used tomeasure the fluorophores in tissue.

Paper IV and paper V focuses on the photodynamics of the cyaninedyes Cy7 and Cy5. A second emissive photoisomerized state in addition tothe ground state (trans) is found and confirmed by various methods, amongthem an approach where TRAST-curves can be selectively be produced fromdifferent bands of the full emission spectrum. This method was establishedduring this work. Differences between fluorescence correlation spectroscopy(FCS) and TRAST are discussed and included in the analysis of data. Varioussensing parameters of Cy7 are explored.

In paper VI it is shown how the blinking dynamics from the photoinduced transient states can be used for fluorescence barcoding and muliplexing.FCS, laser-modulated TRAST and flow-based TRAST, where the sample isflowing through the excitation light, are used to demonstrate this encodingdimension of free dyes and tagged vesicles. Labelled cells are imaged, wheremultiple colors can be produced by the fluorophore specific blinking characteristics.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022
Series
TRITA-SCI-FOU ; 2022:53
National Category
Other Physics Topics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-319734 (URN)978-91-8040-383-2 (ISBN)
Public defence
2022-11-04, FA32, Roslagstullsbacken 21, vån 3 KTH Fysikcentrum, AlbaNova,, Stockholm, 09:00 (English)
Opponent
Supervisors
Available from: 2022-10-11 Created: 2022-10-07 Last updated: 2022-10-11Bibliographically approved
2. Photoluminescence-based characterization of bioengineered nanovesicles and erbium emitters
Open this publication in new window or tab >>Photoluminescence-based characterization of bioengineered nanovesicles and erbium emitters
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In recent decades, photoluminescence properties of single molecules and ions have opened new possibilities for studies on smaller size scales, below the light-diffraction limit. In this thesis, the advantages of such single photon emitters were harnessed and studied mainly in the field of biophysics, but also, in investigations within solid state photonics. The first aspect encompassed studies on extracellular vesicles (EVs) and nanovesicles derived from red blood cell (RBC) membranes which were bioengineered for drug delivery applications. RBC-derived vesicles demonstrated high biocompatibility and low immunogenicity, offering superior production scalability over physiological EVs. However, thorough physical characterizations of such nanovesicles are yet to be developed. Such investigations are essential for their clinical deployment, for therapeutic and diagnostic purposes. Initially, the morphology and size-stability of vesicles were investigated by applying atomic force microscopy and dynamic light scattering. These studies demonstrated the size heterogeneity and agglomeration tendencies of the vesicles. Comparative studies on physiological EVs revealed a higher size stability, while RBC-produced vesicles showed about 50 % reversible agglomerations. Secondly, a dual-colour coincident fluorescent burst (DC-CFB) experimental analysis technique was developed. DC-CFB was then used to characterize and profile the cargo-loading yields of bioengineered nanovesicles, overcoming challenges related to their small size (below the diffraction limit), their inherent heterogeneity, and the presence of free, non-encapsulated cargoes. The developed methodology was then applied to explore the loading with relatively small single nucleotides (dUTP) as well as larger antibody (Ab) molecules, motivated by the prospective role of such EVs and EV-mimetic bioengineered vesicles as nanocarriers of therapeutic drugs. The studies demonstrated consistent average loading yields of around 14-20 % for both cargo types (dUTP and Ab) into both vesicle categories, i.e., EVs and RBC-derived vesicles. Additionally, the analysis capability of the DC-CFB technique at single-vesicle and single-molecule levels, afforded analyses of the number of loaded molecules inside each vesicle, and how this number varied with the vesicle size. On average, this number was found to be greater than two, for both cargo types. Overall, the developed techniques based on fluorescence single photon counting provided a comprehensive assessment of the drug loading properties of nanovesicles. Such bioengineered nanocarriers have a disruptive potential for pharmaceutical applications. The last part of the thesis investigates the realm of solid-state on-chip photon emitters. Specifically, it considers the integration of erbium ions, exhibiting photoluminescent emission in the telecommunication C-band, into thin film lithium niobate (TFLN) waveguides. An Er-ion implantation process compatible with integrated optical circuits in x-cut TFLN was developed and the erbium photoluminescence properties were investigated versus temperature. These preliminary studies provide a foundation for future integration of Er single photon emitters into TFLN-based photonic components.

Abstract [sv]

Under de senaste årtiondena har fotoluminescens-egenskaper hos enskilda molekyler och joner öppnat nya möjligheter till studier på mindre storleksskalor, under ljusdiffraktionsgränsen. I den här avhandlingen utnyttjades och studerades fördelarna med sådana enskilda foton-källor främst inom biofysik, men också för undersökningar inom fasta tillståndets fotonik. Det första aspekten omfattade studier av extracellulära vesiklar (EVs) och nanovesiklar, genererade från röda blodkroppars (RBC) membran, och utformade för applikationer rörande leverans av läkemedel i kroppen. De RBC-genererade vesiklarna uppvisade hög biokompatibilitet och låg immunogenicitet och erbjöd en överlägsen uppskalbarhet för produktion jämfört med fysiologiska EVs. Emellertid måste noggranna fysiska karakteriseringar av sådana nanovesiklar ännu utvecklas. Sådana undersökningar är nödvändiga för att i förlängningen kunna använda denna typ av vesiklar klinikst, för terapeutiska och diagnostiska ändamål. Inledningsvis undersöktes morfologin och storleksstabiliteten hos vesiklarna genom atomkraftsmikroskopi och dynamisk ljusspridning. Dessa studier visade på storleksheterogenitet och agglomereringstendenser hos vesiklarna. Jämförande studier av fysiologiska EVs avslöjade deras förhållandevis högre storleksstabilitet, medan RBC-producerade vesiklar uppvisade reversibla agglomerationer i omkring 50 % av fallen. För det andra utvecklades en experimentell analysmetod med tvåfärgs-avläsning av sammanfallande fluorescens-signaler (DC-CFB). Metoden användes sedan för att karakterisera och profilera molekylupptaget hos de bioteknologiskt framtagna nanovesiklarna. Därmed var det möjligt att hantera vesiklarnas ringa storlek (under diffraktionsgränsen), deras inneboende heterogenitet och närvaron av fria, icke-inkapslade molekyler. Den utvecklade metoden tillämpades därefter för att utforska upptaget i vesiklarna av relativt små nukleotider (dUTP) såväl som av större antikroppsmolekyl (Ab), motiverat utifrån en möjlig framtida användning av sådana EVs och EV-mimetiska vesiklar som nanobärare av terapeutiska läkemedel. Studierna visade genomgående genomsnittliga upptag runt 14-20 % för båda molekyl-typerna (dUTP och Ab), i både EVs och i de RBC-tillverkade vesiklarna. Dessutom möjliggjorde DC-CFB-tekniken analyser på enstaka-vesikel och enstaka-molekylnivå, av antalet upptagna molekyler inuti varje vesikel i förhållande till dess storlek. I genomsnitt var detta antal större än två för de båda upptagna molekyl-typerna. Sammantaget gav de utvecklade teknikerna, baserade på detektion av enstaka fluorescens--fotoner, en omfattande bedömning av kapaciteten för läkemedelsupptag hos nanovesiklar. Bioteknologiska nanotransportörer av detta slag har en betydande potential för farmaceutiska tillämpningar. Den sista delen av avhandlingen undersöker området för fasta tillståndets on-chip-fotonemitterare. Mer specifikt undersöks integrationen av erbiumjoner, som uppvisar fotoluminescerande emission i telekommunikations-C-bandet, i tunnfilmer av litiumniobat (TFLN) vågledare. En Er-jonimplanteringsprocess som är kompatibel med integrerade optiska kretsar I x-delat TFLN utvecklades och erbiums fotoluminescensegenskaper undersöktes i förhållande till temperaturen. Dessa inledande studier utgör en grund för framtida integration av enskilda fotonemitterare av Er i TFLN-baserade fotoniska komponenter.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2023:64
Keywords
Bioengineered nanovesicles, Coincident fluorescent burst analysis, Drug loading, Erbium emitters, Lithium niobate, Photoluminescence., Bioingenjörskonstruerade nanovesiklar, Analys av sammanfallande fluorescerande blossteknik, Läkemedelslastning, Erbium-emitterare, Lithium niobate, Fotoluminiscens.
National Category
Biophysics Nano Technology
Research subject
Biological Physics; Physics, Optics and Photonics
Identifiers
urn:nbn:se:kth:diva-341884 (URN)978-91-8040-797-7 (ISBN)
Public defence
2024-02-02, Pärlan, Albano, Hus 1, Plan 6, Stockholm, 09:30 (English)
Opponent
Supervisors
Note

QC 2024-01-08

Available from: 2024-01-08 Created: 2024-01-05 Last updated: 2024-01-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Sanaee, MaryamSandberg, ElinWidengren, JerkerGallo, Katia

Search in DiVA

By author/editor
Sanaee, MaryamSandberg, ElinRonquist, K. GöranMorrell, Jane M.Widengren, JerkerGallo, Katia
By organisation
Quantum and Biophotonics
In the same journal
Small
Biophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 100 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf