Analysing the Energy Efficiency of Training Spiking Neural Networks
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE credits
Student thesisAlternative title
Analysering av Energieffektiviteten för Träning av Spikande Neuronnät (Swedish)
Abstract [en]
Neural networks have become increasingly adopted in society over the last few years. As neural networks consume a lot of energy to train, reducing the energy consumption of these networks is desirable from an environmental perspective. Spiking neural network is a type of neural network inspired by the human brain which is significantly more energy efficient than traditional neural networks. However, there is little research about how the hyper parameters of these networks affect the relationship between accuracy and energy. The aim of this report is therefore to analyse this relationship. To do this, we measure the energy usage of training several different spiking network models. The results of this study shows that the choice of hyper-parameters in a neural network does affect the efficiency of the network. While correlation between any individual factors and energy consumption is inconclusive, this work could be used as a springboard for further research in this area.
Abstract [sv]
Under de senaste åren har neuronnät blivit allt vanligare i samhället. Eftersom neuronnät förbrukar mycket energi för att träna dem är det önskvärt ur miljösynpunkt att minska energiförbrukningen för dessa nätverk. Spikande neuronnät är en typ av neuronnät inspirerade av den mänskliga hjärnan som är betydligt mer energieffektivt än traditionella neuronnät. Det finns dock lite forskning om hur hyperparametrarna i dessa nätverk påverkar sambandet mellan noggrannhet och energi. Syftet med denna rapport är därför att analysera detta samband. För att göra detta mäter vi energiförbrukningen vid träning av flera olika modeller av spikande neuronnät-modeller. Resultaten av denna studie visar att valet av hyperparametrar i ett neuronnät påverkar nätverkets effektivitet. Även om korrelationen mellan enskilda faktorer och energiförbrukning inte är entydig kan detta arbete användas som en startpunkt för ytterligare forskning inom detta område.
Place, publisher, year, edition, pages
2022. , p. 26
Series
TRITA-EECS-EX ; 2022:488
Keywords [en]
Spiking Neural Networks, SNN, SLAYER, SRM, Energy consumption, Efficiency, DVS, Event Based Vision
Keywords [sv]
Spikande neuronnät, SNN, SLAYER, SRM, Energikonsumption, Effektivitet, DVS, Event Based Vision
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-319910OAI: oai:DiVA.org:kth-319910DiVA, id: diva2:1702463
Subject / course
Computer Science
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
2022-10-112022-10-112022-10-11Bibliographically approved