Open this publication in new window or tab >>2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Renewable energy is an important topic as global energy consumption continues to rise. Because the sun emits an enormous amount of energy, solar energy is a promising source. However, most of the commercial solar cell technology is manufactured in an energy demanding process and there is a need for new, easily processed materials. This thesis concerns quantum dots, which are nanoparticles that can absorb light of different energies depending on their size. They can be synthesised by solution-based chemistry and turned into solid thin films to harvest sunlight. The fundamental properties of quantum dots need to be better understood before production on large scales may commence. The aim of this thesis was to investigate the fundamental properties of lead sulfide quantum dots.
The methods used in this thesis are based on photoelectron spectroscopy. They allowed investigation of materials as-is, but also changes upon excitation by laser or X-rays. Using a laser, dynamics on pico- to microsecond timescales were studied by time-resolved photoelectron spectroscopy. Using a range of X-rays, the probability of charge transfer in the attosecond range was investigated.
Steady-state investigation showed that different surface treatment of the quantum dots caused different resistance towards surface oxidation and X-ray damage.
Different layers in the structure of solar cells can influence the photovoltage, an important parameter in achieving high power conversion efficiencies. Time-resolved photoelectron spectroscopy was developed and used to investigate the contributions of the layers to photovoltage generation. We observed photovoltage dynamics on a timescale covering six orders of magnitude.
The mechanism of charge transfer in quantum dots of different sizes was studied by core-hole clock spectroscopy in the attosecond regime. Our results show that quantum confinement affects the charge transfer only at low excitation energies.
Abstract [sv]
Förnybar energi är viktig då den globala energikonsumtionen fortsätter öka. Solenergi är en lovande energikälla eftersom solen strålar ut otroligt mycket energi. Då kommersiell solcellsteknologi använder mycket energikrävande tillverkningsprocesser finns det behov av nya material som är enkla att tillverka. Denna avhandling handlar om kvantpunkter som är nanopartiklar vilka kan absorbera ljus av olika energi, beroende på partiklarnas storlek.
Lösningsbaserad syntes är en teknik för att tillverka tunna filmer av kvantpunkter. Grundläggande egenskaper hos kvantpunkter behöver kartläggas ytterligare innan storskalig produktion av sådana kan påbörjas. Målet med denna avhandling var att undersöka grundläggande egenskaper hos kvantpunkter bestående av blysulfid.
Analysmetoderna i denna avhandling baseras på fotoelektron-spektroskopi. Dessa möjliggör studier av material utan ytterligare bearbetning samt hur de förändras när de påverkas av laserljus eller röntgenstrålning. Med laserpåverkan har dynamik på pico- till mikrosekundsskala kunnat studeras med tidsupplöst fotoelektron-spektroskopi och genom att använda röntgenstrålning med olika energi har sannolikheten för laddningsöverföring studerats på attosekundtidsskalan.
Tidsoberoende studier visade att olika ytbehandlingar på kvantpunkterna gav upphov till olika motstånd mot oxidation och strålskador.
Olika lager i solcellers struktur kan påverka fotospänningen, vilken är en viktig parameter för att uppnå hög energiomvandlingseffektivitet. Tidsupplöst fotoelektronspektroskopi utvecklades och användes för att undersöka olika lagers bidrag till fotospänningen. Vi observerade tidsberoendet hos fotospänningen på en tidskala som spände över sex storleksordningar.
Laddningsöverföringsmekanismen hos kvantpunkter med olika storlek studerades på attosekundstidsskalan med kärnhålsklocks-spektroskopi. Våra resultat visar att kvanteffekter orsakade av instängning påverkar laddningsöverföringen enbart vid låga excitationsenergier.
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2022. p. 107
Series
TRITA-CBH-FOU ; 2022:52
National Category
Physical Chemistry
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-319933 (URN)978-91-8040-370-2 (ISBN)
Public defence
2022-11-04, Kollegiesalen, Brinnelvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 2022-10-11
2022-10-112022-10-112022-10-11Bibliographically approved