kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ICME guided study of mass transport in production and application of cemented carbides
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Structures.ORCID iD: 0000-0001-5891-0638
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cemented carbides are metallic composites consisting of a WC hard phase and a ductile binder, usually Co-based, produced by powder metallurgy and sintering. Cemented carbides are an essential part of modern material and manufacturing processes. However, Co powder is classified as a carcinogenic material with serious health hazards, and most virgin Co reservoirs are located in conflict regions. In addition, there are monopolies in the market for pure tungsten. Therefore, reducing the consumption of cobalt or replacing it with other non-hazardous elements would increase the sustainability of cemented carbide production. Furthermore, advances in production technology can help overcome raw material limitations. One such advancement is non-homogeneous structures and properties for optimization of microstructure which is the topic of this thesis. 

Integrated computational materials engineering (ICME) and its complementary tools, calculation of phase diagram (CALPHAD), and ab-initio modeling are strong tools that bridge experimentation and modeling. In this thesis, a framework for the material design of non-homogeneous cemented carbides is proposed and tested using these computational tools. 

The workflow of the material design of non-homogeneous microstructure and properties were studied on different length scales. Atomistic modeling with density functional theory (DFT), ab-initio molecular dynamics (AIMD), and generalized hydrodynamics (GHD) were used to model the viscosity of liquid Co binder. In addition, the mobility of Ti and Fe in disordered BCC TiFe alloy was assessed using new experimental data from the diffusion couple experiments and an electron probe micro-analyzer (EPMA). These two studies were conducted to complete the data necessary to study cemented carbides’ processing and performance. 

The other studied phenomenon studied by experimentation and modeling is the formation of the gradient zone and the γ cone structure. In addition, a phenomenological model for liquid phase migration (LPM) was created and implemented using the homogenization approach. The LPM pro- cess was studied experimentally and modeled with the YAPFI software. A study of these performers was necessary to link processing and microstructure. On the performance side, the chemical interaction between cutting tools and Ti alloys was studied in detail through experimentation and modeling of diffusion. In addition, hardness and toughness models were applied to predict the longevity of studied cemented carbides. Finally, by applying ICME and material design, a high entropy alloy (HEA) alternative to Co binder was designed, produced, and tested. 

The research presented in this dissertation attempts to fill the gaps in the material design workflow of cemented carbides by developing new tools and methods based on ICME and CALPHAD paradigms. This goal is achieved by studying different length scales, processing methods, microstructure, properties, and performance of cemented carbides. 

Abstract [sv]

Hårdmetaller är metalliska kompositer som består av en hård fas, oftast WC, och ett segt bindemedel, vanligtvis Co-baserat, framställt genom pulvermetal- lurgi och sintring. Hårdmetaller är en väsentlig del av de flesta produktions- processer. Emellertid är Co-pulver klassificerat som ett cancerframkallande material med allvarliga hälsorisker, och de flesta jungfruliga Co-reservoarer finns i konfliktområden. Dessutom finns det monopol på marknaden för ren volfram. Därför skulle en minskning av förbrukningen av kobolt eller att ersät- ta den med andra ofarliga ämnen öka hållbarheten i produktionen av hårdme- tall. Dessutom kan framsteg inom produktionsteknik hjälpa till att övervin- na råvarubegränsningar. Ett sådant framsteg är “icke-homogena” strukturer och beräkiningsverktyg för optimering av produktmikrostruktur som är äm- net för denna avhandling. “Integrated Computational Materials Engineering (ICME)” och dess komplementärar verktyg, beräkning av fasdiagram (CALP- HAD) och ab-initio modellering, är verktyg som överbryggar experiment och modellering. Med hjälp av dessa verktyg föreslås och testas ett ramverk för materialdesign av icke-homogena hårdmetaller i denna avhandling.

Arbetsflödet för materialdesign av icke-homogen mikrostruktur och egen- skaper studerades påolika längdskalor. Atomistisk modellering med densitets- funktionsteori (DFT), ab-initio molekylär dynamik (AIMD) och generaliserad hydrodynamik (GHD) användes för att modellera viskositeten hos flytande Co-bindemedel. Rörligheten för Ti och Fe i oordnad BCC TiFe utvärderades med hjälp av nya experimentella data som samlats in från diffusionsparexpe- rimentet och EPMA-analys. Dessa två studier syftade till att komplettera de data som är nödvändiga för att studera hårdmetalls bearbetning och prestan- da. Bildandet av gradientzonen och γ-konstrukturen modellerades och utvär- derades experimentellt. En fenomenologisk modell för flytande fasmigrering (“ Liquid Phase Migration”, LPM) skapades och implementerades med hjälp av homogeniseringsmetoden. LPM-processen studerades experimentellt och mo- dellerades med YAPFI-mjukvaran. En studie av dessa processer var nödvän- dig för att koppla samman bearbetning och mikrostruktur. På prestandasidan studerades kemisk interaktion mellan skärverktyg och Ti-legeringar i detalj genom experiment och diffusionsmodellering. Dessutom användes hårdhets- och seghetsmodeller för att förutsäga hårdmetallers prestanda. Slutligen, med tillämpning av ICME och materialdesign, designades, producerades och tes- tades ett alternativt bindemedel med bestående av högentropilegering. ICME och CALPHAD genomsyrade hela forskningsprojekted. Studierna på olika längdskalor hjälpte till att bättre förstå bearbetning, mikrostruktur, egenska- per och prestanda hos hårdmetaller. Dessutom har nya verktyg och metoder utvecklats för att fylla luckorna i materialdesignens arbetsflöde för hårdme- taller.

Hårdmetaller är metalliska kompositer som består av en hård fas, oftast WC, och ett segt bindemedel, vanligtvis Co-baserat, framställt genom pulvermetal- lurgi och sintring. Hårdmetaller är en väsentlig del av de flesta produktions- processer. Emellertid är Co-pulver klassificerat som ett cancerframkallande material med allvarliga hälsorisker, och de flesta jungfruliga Co-reservoarer finns i konfliktområden. Dessutom finns det monopol på marknaden för ren volfram. Därför skulle en minskning av förbrukningen av kobolt eller att ersät- ta den med andra ofarliga ämnen öka hållbarheten i produktionen av hårdme- tall. Dessutom kan framsteg inom produktionsteknik hjälpa till att övervin- na råvarubegränsningar. Ett sådant framsteg är “icke-homogena” strukturer och beräkiningsverktyg för optimering av produktmikrostruktur som är äm- net för denna avhandling. “Integrated Computational Materials Engineering (ICME)” och dess komplementärar verktyg, beräkning av fasdiagram (CALP- HAD) och ab-initio modellering, är verktyg som överbryggar experiment och modellering. Med hjälp av dessa verktyg föreslås och testas ett ramverk för materialdesign av icke-homogena hårdmetaller i denna avhandling.

Arbetsflödet för materialdesign av icke-homogen mikrostruktur och egen- skaper studerades påolika längdskalor. Atomistisk modellering med densitets- funktionsteori (DFT), ab-initio molekylär dynamik (AIMD) och generaliserad hydrodynamik (GHD) användes för att modellera viskositeten hos flytande Co-bindemedel. Rörligheten för Ti och Fe i oordnad BCC TiFe utvärderades med hjälp av nya experimentella data som samlats in från diffusionsparexpe- rimentet och EPMA-analys. Dessa två studier syftade till att komplettera de data som är nödvändiga för att studera hårdmetalls bearbetning och prestan- da. Bildandet av gradientzonen och γ-konstrukturen modellerades och utvär- derades experimentellt. En fenomenologisk modell för flytande fasmigrering (“ Liquid Phase Migration”, LPM) skapades och implementerades med hjälp av homogeniseringsmetoden. LPM-processen studerades experimentellt och mo- dellerades med YAPFI-mjukvaran. En studie av dessa processer var nödvän- dig för att koppla samman bearbetning och mikrostruktur. På prestandasidan studerades kemisk interaktion mellan skärverktyg och Ti-legeringar i detalj genom experiment och diffusionsmodellering. Dessutom användes hårdhets- och seghetsmodeller för att förutsäga hårdmetallers prestanda. Slutligen, med tillämpning av ICME och materialdesign, designades, producerades och tes- tades ett alternativt bindemedel med bestående av högentropilegering. ICME och CALPHAD genomsyrade hela forskningsprojekted. Studierna på olika längdskalor hjälpte till att bättre förstå bearbetning, mikrostruktur, egenska- per och prestanda hos hårdmetaller. Dessutom har nya verktyg och metoder utvecklats för att fylla luckorna i materialdesignens arbetsflöde för hårdme- taller.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2022. , p. 55
Series
TRITA-ITM-AVL ; 2022:33
Keywords [en]
cemented carbides, non-homogeneous structures, liquid phase migration, ICME, CALPHAD, materials design, viscosity, diffusion, mass transport, thermodynamics, kinetics, ab-initio
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-320106ISBN: 978-91-8040-392-4 (print)OAI: oai:DiVA.org:kth-320106DiVA, id: diva2:1703692
Public defence
2022-11-18, D31 / https://kth-se.zoom.us/j/68323171363, Lindstedtsvägen 5, Stockholm, 09:00 (English)
Opponent
Supervisors
Projects
Sintering of non-homogeneous structures
Funder
Swedish Foundation for Strategic Research, RMA15-0062Available from: 2022-10-25 Created: 2022-10-14 Last updated: 2022-11-11Bibliographically approved
List of papers
1. Geometry effects during sintering of graded cemented carbides: Modelling of microstructural evolution and mechanical properties
Open this publication in new window or tab >>Geometry effects during sintering of graded cemented carbides: Modelling of microstructural evolution and mechanical properties
2019 (English)In: Results in Materials, E-ISSN 2590-048X, Vol. 1, article id 100008Article in journal (Refereed) Published
Abstract [en]

Cemented carbides with mesoscopically non-homogeneous properties by design represent a potential to enhanceperformance in metal cutting and rock drilling. Development of in-homogeneous structured hard materialsthrough an ICME approach requires a thorough understanding of diffusion kinetics during solid and liquid statesintering. In this work, we used thermodynamics and diffusion kinetics modelling tools to predict the micro-structure and resulting properties of cemented carbide composites. First, we designed and gradient sintered two(WC-TiCN-Co) cemented carbides with different nitrogen to titanium ratios. Second, we reproduced the experi-mental results in 2D by means of thermodynamic and kinetic simulations. In the last step we calculated fracturetoughness KIC, and Vickers hardness of cemented carbides. The agreement between simulations and experimentalresults is fair and acceptable

Keywords
ICME Diffusion Cemented carbides Gradient sintering Hardness Fracture toughness
National Category
Engineering and Technology
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-258031 (URN)10.1016/j.rinma.2019.100008 (DOI)2-s2.0-85122925914 (Scopus ID)
Projects
Sintring av inhomogena strukturer för förbättra prestanda
Funder
Swedish Foundation for Strategic Research, RMA15-0062
Note

QC 20190916

Available from: 2019-09-09 Created: 2019-09-09 Last updated: 2024-06-27Bibliographically approved
2. Liquid phase migration in cemented carbides - experiments and modelling
Open this publication in new window or tab >>Liquid phase migration in cemented carbides - experiments and modelling
(English)Manuscript (preprint) (Other academic)
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-320393 (URN)
Funder
Swedish Foundation for Strategic Research, RMA15-0062
Note

QC 20221025

Available from: 2022-10-20 Created: 2022-10-20 Last updated: 2022-10-25Bibliographically approved
3. An experimental and theoretical investigation on Ti-5553/WC-Co(6%) chemical interactions during machining and in diffusion couples
Open this publication in new window or tab >>An experimental and theoretical investigation on Ti-5553/WC-Co(6%) chemical interactions during machining and in diffusion couples
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Materials Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-320395 (URN)
Funder
Swedish Foundation for Strategic Research, RMA15-0062
Note

QC 20221025

Available from: 2022-10-20 Created: 2022-10-20 Last updated: 2022-10-25Bibliographically approved
4. Predicting wear mechanisms of ultra-hard tooling in machining Ti6Al4V by diffusion couples and simulation
Open this publication in new window or tab >>Predicting wear mechanisms of ultra-hard tooling in machining Ti6Al4V by diffusion couples and simulation
Show others...
2023 (English)In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 43, no 2, p. 291-303Article in journal (Refereed) Published
Abstract [en]

Conventional cemented carbide is recommended for machining Ti6Al4V. However, polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (pcBN) also show promise. Demands for higher productivity accelerate diffusional dissolution and chemically driven wear mechanisms in these tool materials. This study investigates active wear mechanisms by studying the interactions between Ti6Al4V and PCD, pcBN, and cemented carbide tools in diffusion couples at temperatures from 900° to 1300°C. All tool materials suffered from diffusion to varying degrees, and different chemical reactions occurred. Titanium carbide with minor vanadium alloying (Ti,V)C reaction products act as diffusion barriers when using PCD and cemented carbide, while the reaction products acting as diffusion barrier in pcBN is (Ti,V)B2. The presence of Mo and W in binder sites of pcBN reduces diffusional dissolution of cBN. Diffusion simulations agreed well with microscopy investigations and were enabled by the known temperature and pressure conditions of the static diffusion couples.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Cemented carbide; Diffusion couple; pcBN; PCD; Ti6Al4V
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-320105 (URN)10.1016/j.jeurceramsoc.2022.10.005 (DOI)000884425300003 ()2-s2.0-85139731397 (Scopus ID)
Note

QC 20221025

Available from: 2022-10-14 Created: 2022-10-14 Last updated: 2024-02-13Bibliographically approved
5. Viscosity of liquid cobalt from ab-initio molecular dynamics
Open this publication in new window or tab >>Viscosity of liquid cobalt from ab-initio molecular dynamics
(English)Manuscript (preprint) (Other academic)
National Category
Materials Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-320394 (URN)
Funder
Swedish Foundation for Strategic Research, RMA15-0062,RMA15-0048.
Note

QC 20221025

Available from: 2022-10-20 Created: 2022-10-20 Last updated: 2022-10-25Bibliographically approved
6. Mobilities of Ti and Fe in disordered TiFe-BCC assessed from new experimental data
Open this publication in new window or tab >>Mobilities of Ti and Fe in disordered TiFe-BCC assessed from new experimental data
Show others...
2021 (English)In: Calphad, ISSN 0364-5916, E-ISSN 1873-2984, Vol. 74, article id 102300Article in journal (Refereed) Published
Abstract [en]

Pure titanium has an HCP structure and lacks mechanical properties for many industrial purposes. The BCC phase of Ti is required to make alloys with increased strength compared to pure Ti. Iron is the most potent element for stabilising the BCC phase. However, the addition of Fe to Ti causes segregation issues during solidification, which can be avoided by diffusion-driven solid-state alloying. To predict the diffusion kinetics, the interaction mobility parameters of Ti and Fe in the disordered BCC phase of Ti are necessary. In this work, these parameters are optimised based on new experimental data from Ti-Fe diffusion couples produced by the Field Assisted Sintering Technology (FAST). Diffusion couples were held at 1173K and 1273K for one hour. High-resolution Fe concentration profiles are obtained from Electron Probe Micro Analyser (EPMA). Ternary mobility interaction parameters are assessed based on binary endmembers with a DICTRA sub-module, and results are compared to earlier assessments of mobilities of the disordered BCC TiFe system.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD, 2021
Keywords
Disordered BCC titanium iron, Mobility database, DICTRA, EPMA, Machining
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-300829 (URN)10.1016/j.calphad.2021.102300 (DOI)000685263000005 ()2-s2.0-85109466128 (Scopus ID)
Note

QC 20210929

Available from: 2021-09-29 Created: 2021-09-29 Last updated: 2022-10-24Bibliographically approved
7. High entropy alloys: Substituting for cobalt in cutting edge technology
Open this publication in new window or tab >>High entropy alloys: Substituting for cobalt in cutting edge technology
Show others...
2018 (English)In: Applied Materials Today, ISSN 2352-9407, Vol. 12, p. 322-329Article in journal (Refereed) Published
Abstract [en]

Cemented carbide, also known as hard metal, is one of the most outstanding composite engineering materials since its commercial introduction in the 1920s. The unique combination of strength, hardness and toughness makes cemented carbides highly versatile materials for the most demanding engineering applications. In their simplest form, these materials are composites of tungsten carbide (WC) grains that are cemented with a ductile metallic binder phase, typically cobalt. However, despite the superiority of Co as binder material, there is a long-standing need to find alternative binders due to serious health concerns that have haunted the industry for nearly 80 years. In the present study, we develop a new cemented carbide with a high entropy alloy binder phase (CoCrFeNi) from raw materials to a fully functional, coated and gradient-sintered cutting tool insert. The new hard metal with reduced Co content is designed by using first principles theory and the CALPHAD method. The cutting tool was made by pressing the new hard metal in a standard geometry, sintered to have a thin binder phase enriched surface zone, free from cubic carbides and coated with protective layers of Ti(C,N) and Al2O3. The resulting cutting insert was tested in a real machining operation and compared to a state-of-the-art reference that had Co as binder phase. The cutting tool made of the newly developed cemented carbide has an exceptionally high resistance against plastic deformation at all tested cutting speeds in the machining test, outperforming the reference insert, which shows a linear increase in edge depression when the cutting speed is increased. This result opens up the possibility to utilize the unique properties of high entropy alloys for industrial applications, in particular, as binder phase in new cemented carbides.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
High entropy alloys, Cemented carbides, Cobalt binder, Alternative binders, Density functional theory, Calphad
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-235109 (URN)10.1016/j.apmt.2018.07.001 (DOI)000443213700028 ()2-s2.0-85049613452 (Scopus ID)
Funder
VINNOVA, 2016-00805Swedish Research CouncilSwedish Foundation for Strategic Research The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)Carl Tryggers foundation
Note

QC 20180919

Available from: 2018-09-19 Created: 2018-09-19 Last updated: 2024-03-18Bibliographically approved

Open Access in DiVA

fulltext(13971 kB)549 downloads
File information
File name FULLTEXT03.pdfFile size 13971 kBChecksum SHA-512
5853c8ed0c4228c3f19979ac8494e5dbaa129d295411b31ab1f02209024f53d2ac875b2258a15fae5eac99998501cd18f474d71347b0a727dda9f5c9dd144a09
Type fulltextMimetype application/pdf

Other links

http://Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English)

Authority records

Salmasi, Armin

Search in DiVA

By author/editor
Salmasi, Armin
By organisation
Structures
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 559 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 687 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf