kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theory of bipolar connections in capacitive deionization and principles of structural design
KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0003-3081-8527
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0002-0074-3504
2022 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 430, p. 141066-, article id 141066Article in journal (Refereed) Published
Abstract [en]

Capacitive deionization (CDI) is an emerging desalination technique for which upscaling is increasingly relevant for practical applications. Recent research has suggested using bipolar stacks for fast charging and effective energy recovery, but contradicting results have been reported. In this work, we use circuit modeling and finite element (FEM) simulations to understand both the ideal and non-ideal behavior of these systems. This bottom-up approach shows that charging with the ideal bipolar connection is faster proportionally to the total number of cells in a stack. The identified reason for this gain is that the electrical resistance is mainly external, and the same current charges all cells in the stack. Better still, the maximum charge and energy consumption are the same as in the unipolar case. However, the bipolar setup will experience short-circuit if there is insufficient isolation of the solution between the cell compartments. Conversely, the improved adsorption will be nullified if there is sub-stantial resistance in the floating current collectors separating the compartments. In conclusion, bipolar con-nections have lots of potential, and developments in the internal separators between cells could be massively beneficial for future upscaled CDI devices.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 430, p. 141066-, article id 141066
Keywords [en]
Bipolar, Capacitive deionization, Desalination, Finite element, Stack
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Other Physics Topics
Identifiers
URN: urn:nbn:se:kth:diva-319719DOI: 10.1016/j.electacta.2022.141066ISI: 000860424100006Scopus ID: 2-s2.0-85136518308OAI: oai:DiVA.org:kth-319719DiVA, id: diva2:1704151
Note

QC 20221017

Available from: 2022-10-17 Created: 2022-10-17 Last updated: 2022-11-25Bibliographically approved
In thesis
1. At the Mountains of Modeling: Multiscale Simulations of Desalination by Capacitive Deionization
Open this publication in new window or tab >>At the Mountains of Modeling: Multiscale Simulations of Desalination by Capacitive Deionization
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

More than 2 billion people are living in water-scarce areas. Meanwhile, there are enormous amounts of water in the salty oceans. Capacitive deionization (CDI) rises to the challenge with electrochemical cells for desalinating the water. As the CDI field expands, modeling becomes an increasingly important part of the development landscape. Multiscale modeling could bring innovations from the material scale to pilot plants. 

The multiscale work in this thesis has been like climbing a mountain. At the start, we investigate the macroscopic device level. One milestone is the electrolytic-capacitor (ELC) model, which can simulate CDI process dynamics. Whereas previous 2D models were unsteady for a single CDIcell, the ELC model could accurately simulate stacks of over 100 cells at a fraction of the time. It also enables simulations of complex upscaled geometries, such as bipolar electrode stacks, ohmic charging, and asymmetric devices. Going up the mountain, the mesoscopic level reveals the local mechanisms behind the macroscopic behavior. One important stepping stone is the dynamic Langmuir (DL) model, which reveals how isotherm-based modeling can crease stable and tractable simulations. Also, developments in isotherm, double-layer, and circuit modeling make it possible to choose what model structures to lean on depending on the conditions. Near the top of the mountain, the microscopic level shows the fundamental atomic mechanisms behind the mesoscopic material properties. These investigations reveal a ladder mechanism of ion transport in crystals of Prussian blue analogs (PBA), meaning the cations climb frames formed by negative groups in the crystal structure.

In the end, we plant a flag by combining the developments from the journey into a complete multiscale model. That model demonstrated that we could predict CDI charging trends from the atomic structure of PBA electrodes. Having the full multiscale model also made it possible to backtrack and determine atomic-level mechanisms by comparing the output of different mechanism cases with macroscopic experiment data. The multiscale mountain is massive and has big potential. A dream is that future research will expand these concepts, in CDI and beyond.

Abstract [sv]

Över 2 miljarder människor lever i dag i områden med vattenbrist, samtidigt som det finns enorma mängder saltvatten i haven. Kapacitiv avjonisering (CDI) kan hantera detta genom avsaltning av vatten med hjälp av elektrokemiska celler. När CDI-fältet expanderar blir också modellering allt viktigare. Speciellt med multiskalemodellering finns möjligheten att driva innovationer från material till pilotanläggningar. 

Vårt jobb har varit som att klättra upp för ett berg. I den inledande delen undersökte vi den makroskopiska nivån, som handlar om hur avsaltningsenheterna fungerar. Ett viktigt steg för att simulera dynamiken i processen har varit utvecklingen av ELC modellen. Till skillnad från tidigare modeller som kunde vara instabila för en enda avsaltningscell så kunde ELC-modellen hantera travar med över 100 celler. Det gör det möjligt att simulera komplexa uppskalade strukturer, såsom bipolära elektroder, ohmsk laddning, och asymmetrisk design. Vidare upp i berget finns mesoskalan. Den visar på de lokala mekanismerna bakom det makroskopiska beteendet. En viktig del har varit den dynamiska Langmuir-modellen (DL), som har visat hur isotermbaserad modellering kan ge stabila och smidiga simuleringar. Utvecklingen i isoterm-, dubbellager-, och kretsmodeller gör det även möjligt att välja lämpliga metoder att stödja sig mot beroende på situation. Nära toppen av berget finns mikroskalan, som handlar om det atomära beteendet som bestämmer de mesoskopiska egenskaperna. Här har vi upptäckt en stegmekanism för jontransport i kristaller av berlinerblått. Detta innebär att katjoner klättar längs ramar som utgörs av negativa grupper i kristallstrukturen.

Slutligen hissar vi flaggan genom att kombinera resultaten från alla nivåer. Multiskalemodellen visar att vi kan förutsäga laddningstrender i CDI baserat på atomstrukturen i elektroden. Multiskalemodellen gjorde det också möjligt att gå baklänges och att identifiera mekanismer på mikroskala genom att beräkna den makroskopiska effekten av olika fall och jämföra med experimentella data. Multiskaleberget är massivt och har stor potential. En dröm är att framtida forskning ska utöka koncepten från den här avhandlingen, i CDI och vidare.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. xvii + 203
Series
TRITA-SCI-FOU ; 2022:57
Keywords
Capacitive Deionization, Desalination, Modeling, Multiscale, Simulation, Avsaltning, Kapacitiv Avjonisering, Modellering, Multiskala, Simulering
National Category
Physical Chemistry
Research subject
Physics, Material and Nano Physics; Physics
Identifiers
urn:nbn:se:kth:diva-321885 (URN)978-91-8040-409-9 (ISBN)
Public defence
2022-12-16, https://kth-se.zoom.us/j/8537018117, FB53 AlbaNova, Roslagstullsbacken 22, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
J. Gust. Richert stiftelse, 2020-00584Swedish Research Council, 2018-05387
Note

QC 221125

Available from: 2022-11-25 Created: 2022-11-25 Last updated: 2022-12-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Nordstrand, JohanDutta, Joydeep

Search in DiVA

By author/editor
Nordstrand, JohanDutta, Joydeep
By organisation
Albanova VinnExcellence Center for Protein Technology, ProNovaMaterials and Nanophysics
In the same journal
Electrochimica Acta
Other Electrical Engineering, Electronic Engineering, Information EngineeringOther Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf