kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Max-3-Lin over Non-Abelian Groups with Universal Factor Graphs
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0002-8416-8665
2022 (English)In: Leibniz International Proceedings in Informatics, LIPIcs, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , 2022Conference paper, Published paper (Refereed)
Abstract [en]

Factor graph of an instance of a constraint satisfaction problem with n variables and m constraints is the bipartite graph between [m] and [n] describing which variable appears in which constraints. Thus, an instance of a CSP is completely defined by its factor graph and the list of predicates. We show inapproximability of Max-3-LIN over non-abelian groups (both in the perfect completeness case and in the imperfect completeness case), with the same inapproximability factor as in the general case, even when the factor graph is fixed. Along the way, we also show that these optimal hardness results hold even when we restrict the linear equations in the Max-3-LIN instances to the form x · y · z = g, where x, y, z are the variables and g is a group element. We use representation theory and Fourier analysis over non-abelian groups to analyze the reductions. 

Place, publisher, year, edition, pages
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , 2022.
Series
Leibniz international proceedings in informatics, ISSN 1868-8969
Keywords [en]
Hardness of approximation, Linear equations, Non-abelian groups, Universal factor graphs, Fourier analysis, Group theory, Hardness, Bipartite graphs, Constraint-satisfaction problems, Factor graphs, Hardness result, Inapproximability, Inapproximability factor, Representation theory, Universal factor graph, Constraint satisfaction problems
National Category
Computer Sciences Discrete Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-320340DOI: 10.4230/LIPIcs.ITCS.2022.21Scopus ID: 2-s2.0-85123988335OAI: oai:DiVA.org:kth-320340DiVA, id: diva2:1704635
Conference
13th Innovations in Theoretical Computer Science Conference, ITCS 2022, 31 January-3 February 2022, Berkeley, CA, USA
Note

Part of proceedings: ISBN 978-3-95977-217-4

QC 20221019

Available from: 2022-10-19 Created: 2022-10-19 Last updated: 2023-05-05Bibliographically approved
In thesis
1. Hardness of Approximating Constraint Satisfaction Problems and Their Variants in Presence of Additional Structural Assumptions
Open this publication in new window or tab >>Hardness of Approximating Constraint Satisfaction Problems and Their Variants in Presence of Additional Structural Assumptions
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis studies how the approximability of some fundamental computational problems is affected by some additional requirements on the structure of the inputs. The problems studied in this thesis belong or are closely related to constraint satisfaction problems (CSPs), which are considered to be one of the most fundamental problems in theoretical computer science.

The first class of problems studied in this thesis consists of some Boolean CSPs with cardinality constraints. A cardinality constraint for an instance of a Boolean CSP restricts assignments to have a certain number of variables assigned to 1 and 0. Assuming the Unique Games Conjecture, we show that Max-Cut with cardinality constraints is hard to approximate within approximately 0.858, and that Max-2-Sat with cardinality constraints is hard to approximate within approximately 0.929. The same inapproximability ratio as for cardinality constrained Max-2-Sat is obtained for the cardinality-constrained Vertex Cover problem, known as Max-k-VC.

We also examine regular constraint satisfaction problems where each variable in an instance has the same number of occurrences. We investigate approximability of such problems and show that for any CSP Λ, the existence of an α-approximation algorithm for regular Max-CSP Λ implies the existence of an (α − o(1))-approximation algorithm for weighted Max-CSP Λ for which the regularity of instances is not imposed. We also give an analogous result for Min-CSPs. In particular, if one is not interested in lower-order terms, we show that the study of the approximability of CSPs can be conducted solely on regular instances.

We also consider approximability of Max-3-Lin problems over non-Abelian groups in a universal factor graph setting. The factor graph of an instance with n variables and m constraints is the bipartite graph between [m] and [n], in which edges connect constraints with the variables they contain. The universal factor graph setting assumes that a factor graph for an instance is fixed for each input size. Building on the previous works, we show optimal inapproximability of Max-3-Lin problems over non-Abelian groups in the universal factor graph setting, both in the case of perfect and almost perfect completeness. We also show that these hardness results apply in the setting in which linear equations in the Max-3-Lin  problem are restricted  to the form x · y · z = g, where x, y, z are variables and $g$ is a group element, in contrast to previous works where constants have appeared on the left side of the equations as well.

Finally, we study the approximability of the Minimum Sum Vertex Cover problem, in which we are given a graph as an input and the goal is to find anordering of vertices that minimizes the total cover time of edges. An edge is covered when one of its endpoints is visited in an ordering, and the covertime for the edge is exactly the time that the endpoint is visited.

In this work, we give the first explicit hardness of approximation result and show that Minimum Sum Vertex Cover can not be approximated below 1.0748, assuming the Unique Games Conjecture. Furthermore, we study Minimum Sum Vertex Cover on regular graphs and demonstrate an inapproximability ratio of 1.0157. By revisiting an algorithm introduced by Feige, Lov\'{a}sz, and Tetali, we also show approximability within 1.225 for regular graphs.

Abstract [sv]

Denna avhandling undersöker hur approximerbarheten av vissa grundläggande datavetenskapliga problem på verkas av ytterligare krav på strukturen hos indata. De studerade problemen tillhör eller är nära relaterade till Constraint Satisfaction Problems (CSPs), som anses vara ett av de mest grundläggande problemen inom teoretisk datavetenskap.

Den första problemklassen som studeras i denna avhandling består av vissa Booleska CSPs med kardinalitetsbegränsningar. En kardinalitetsbegränsning för en instans av en Boolesk CSP begränsar tilldelningarna att ha ett visst antal variabler tilldelade till 1 och 0. Under antagandet att Unique Games Conjecture gäller, visar vi att Max-Cut med kardinalitetsbegränsningar är svårt att approximera inom cirka 0.858, och att Max-2-Sat med kardinalitetsbegränsningar är svårt att approximera inom cirka 0.929. Samma approximationsförhållande som för kardinalitetsbegränsad Max-2-Sat erhålls för kardinalitetsbegrän sade versionen av Vertex Cover-problemet, känd som Max-k-VC.

Vi undersöker också regelbundna begränsningsproblem där varje variabel i en instans har samma antal förekomster. Vi undersöker approximabiliteten för sådana problem och visar att för något CSP Λ så innebär existensen av en α-approximationsalgoritm för regelbundet Max-CSP Λ existensen av en (α − o(1))-approximationsalgoritm för viktade Max-CSP Λ där regelbundenheten för instanserna inte nödvändigtvis är uppfyllt. Vi ger också ett analogt resultat för Min-CSPs. Särskilt visar vi att om man inte är intresserad av termer med lägre ordning så kan undersökningen av approximabiliteten för CSPs utföras enbart på regelbundna instanser.

Vi undersöker även approximerbarheten hos Max-3-Lin problemen över icke-Abelska grupper med universell faktorgraf. Faktorgrafen för en instans med n variabler och m begränsningar är den bipartita grafen mellan [m] och [n] där kanterna kopplar begränsningar till variabler som de innehåller. Den universella faktorgrafen antar att en faktorgraf för en instans är fixerad för varje indatastorlek. Med utgångspunkt från tidigare arbeten visar vi optimal inapproximerbarhet av Max-3-Lin problemet över icke-Abelska grupper med universella faktorgrafer, både i fallet med perfekt och nästan perfekt fullständighet. Vi visar också att dessa svårighetsresultat gäller i fallet där linjära ekvationer i Max-3-Lin problemet är begränsade till formen x·y·z = g, där x, y, z är variablerna och g är ett gruppelement, till skillnad från tidigare arbeten där konstanter även har förekommit på vänster sida av ekvationerna.

Slutligen studerar vi approximabiliteten av Minimum Sum Vertex Cover-problemet, där vi får en graf som indata och målet är att hitta en ordning av hörn som minimerar den totala övertäcktningsiden för kanter. En kant täcks när en av dess ändpunkter besöks i en beställning, och omslaget tid för kanten är exakt den tidpunkt då ändpunkten besöks i ordningen.

I detta arbete ger vi det första explicita resultatet för svårighetsgraden av approximering och visar att Minimum Sum Vertex Cover inte kan approximeras nedanför 1.0748, under antagandet om Unique Games Conjecture. Vidare studerar vi Minimum Sum Certex Cover på regelbundna grafer och visar en inapproximationskvot på 1.0157. Genom att återbesöka en algoritm föreslagen av Feige, Lovász och Tetali, visar vi också approximerbarhet inom 1.225 för regelbundna grafer.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. 165
Series
TRITA-SCI-FOU ; 2023:24
Keywords
Hardness of Approximation, Approximation Algorithms, Label Cover, Vertex Cover, Unique Games Conjecture, Max-3-Lin, Universal Factor Graphs, Regular Constraint Satisfaction Problems, Inapproximerbarhet, Approximationsalgoritm, Label Cover, Vertex Cover, Unique Games Conjecture, Max-3-Lin, Universell Faktorgraf, Regelbundna Begränsningsproblem
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-326609 (URN)978-91-8040-569-0 (ISBN)
Public defence
2023-06-01, https://kth-se.zoom.us/j/63899660090, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 2023-05-08

Available from: 2023-05-08 Created: 2023-05-05 Last updated: 2023-05-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Stankovic, Aleksa

Search in DiVA

By author/editor
Stankovic, Aleksa
By organisation
Mathematics (Dept.)
Computer SciencesDiscrete Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf