kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Liquid phase migration in cemented carbides - experiments and modelling
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Structures.ORCID iD: 0000-0001-5891-0638
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Structures.ORCID iD: 0000-0001-8797-4585
(English)Manuscript (preprint) (Other academic)
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-320393OAI: oai:DiVA.org:kth-320393DiVA, id: diva2:1705081
Funder
Swedish Foundation for Strategic Research, RMA15-0062
Note

QC 20221025

Available from: 2022-10-20 Created: 2022-10-20 Last updated: 2022-10-25Bibliographically approved
In thesis
1. ICME guided study of mass transport in production and application of cemented carbides
Open this publication in new window or tab >>ICME guided study of mass transport in production and application of cemented carbides
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cemented carbides are metallic composites consisting of a WC hard phase and a ductile binder, usually Co-based, produced by powder metallurgy and sintering. Cemented carbides are an essential part of modern material and manufacturing processes. However, Co powder is classified as a carcinogenic material with serious health hazards, and most virgin Co reservoirs are located in conflict regions. In addition, there are monopolies in the market for pure tungsten. Therefore, reducing the consumption of cobalt or replacing it with other non-hazardous elements would increase the sustainability of cemented carbide production. Furthermore, advances in production technology can help overcome raw material limitations. One such advancement is non-homogeneous structures and properties for optimization of microstructure which is the topic of this thesis. 

Integrated computational materials engineering (ICME) and its complementary tools, calculation of phase diagram (CALPHAD), and ab-initio modeling are strong tools that bridge experimentation and modeling. In this thesis, a framework for the material design of non-homogeneous cemented carbides is proposed and tested using these computational tools. 

The workflow of the material design of non-homogeneous microstructure and properties were studied on different length scales. Atomistic modeling with density functional theory (DFT), ab-initio molecular dynamics (AIMD), and generalized hydrodynamics (GHD) were used to model the viscosity of liquid Co binder. In addition, the mobility of Ti and Fe in disordered BCC TiFe alloy was assessed using new experimental data from the diffusion couple experiments and an electron probe micro-analyzer (EPMA). These two studies were conducted to complete the data necessary to study cemented carbides’ processing and performance. 

The other studied phenomenon studied by experimentation and modeling is the formation of the gradient zone and the γ cone structure. In addition, a phenomenological model for liquid phase migration (LPM) was created and implemented using the homogenization approach. The LPM pro- cess was studied experimentally and modeled with the YAPFI software. A study of these performers was necessary to link processing and microstructure. On the performance side, the chemical interaction between cutting tools and Ti alloys was studied in detail through experimentation and modeling of diffusion. In addition, hardness and toughness models were applied to predict the longevity of studied cemented carbides. Finally, by applying ICME and material design, a high entropy alloy (HEA) alternative to Co binder was designed, produced, and tested. 

The research presented in this dissertation attempts to fill the gaps in the material design workflow of cemented carbides by developing new tools and methods based on ICME and CALPHAD paradigms. This goal is achieved by studying different length scales, processing methods, microstructure, properties, and performance of cemented carbides. 

Abstract [sv]

Hårdmetaller är metalliska kompositer som består av en hård fas, oftast WC, och ett segt bindemedel, vanligtvis Co-baserat, framställt genom pulvermetal- lurgi och sintring. Hårdmetaller är en väsentlig del av de flesta produktions- processer. Emellertid är Co-pulver klassificerat som ett cancerframkallande material med allvarliga hälsorisker, och de flesta jungfruliga Co-reservoarer finns i konfliktområden. Dessutom finns det monopol på marknaden för ren volfram. Därför skulle en minskning av förbrukningen av kobolt eller att ersät- ta den med andra ofarliga ämnen öka hållbarheten i produktionen av hårdme- tall. Dessutom kan framsteg inom produktionsteknik hjälpa till att övervin- na råvarubegränsningar. Ett sådant framsteg är “icke-homogena” strukturer och beräkiningsverktyg för optimering av produktmikrostruktur som är äm- net för denna avhandling. “Integrated Computational Materials Engineering (ICME)” och dess komplementärar verktyg, beräkning av fasdiagram (CALP- HAD) och ab-initio modellering, är verktyg som överbryggar experiment och modellering. Med hjälp av dessa verktyg föreslås och testas ett ramverk för materialdesign av icke-homogena hårdmetaller i denna avhandling.

Arbetsflödet för materialdesign av icke-homogen mikrostruktur och egen- skaper studerades påolika längdskalor. Atomistisk modellering med densitets- funktionsteori (DFT), ab-initio molekylär dynamik (AIMD) och generaliserad hydrodynamik (GHD) användes för att modellera viskositeten hos flytande Co-bindemedel. Rörligheten för Ti och Fe i oordnad BCC TiFe utvärderades med hjälp av nya experimentella data som samlats in från diffusionsparexpe- rimentet och EPMA-analys. Dessa två studier syftade till att komplettera de data som är nödvändiga för att studera hårdmetalls bearbetning och prestan- da. Bildandet av gradientzonen och γ-konstrukturen modellerades och utvär- derades experimentellt. En fenomenologisk modell för flytande fasmigrering (“ Liquid Phase Migration”, LPM) skapades och implementerades med hjälp av homogeniseringsmetoden. LPM-processen studerades experimentellt och mo- dellerades med YAPFI-mjukvaran. En studie av dessa processer var nödvän- dig för att koppla samman bearbetning och mikrostruktur. På prestandasidan studerades kemisk interaktion mellan skärverktyg och Ti-legeringar i detalj genom experiment och diffusionsmodellering. Dessutom användes hårdhets- och seghetsmodeller för att förutsäga hårdmetallers prestanda. Slutligen, med tillämpning av ICME och materialdesign, designades, producerades och tes- tades ett alternativt bindemedel med bestående av högentropilegering. ICME och CALPHAD genomsyrade hela forskningsprojekted. Studierna på olika längdskalor hjälpte till att bättre förstå bearbetning, mikrostruktur, egenska- per och prestanda hos hårdmetaller. Dessutom har nya verktyg och metoder utvecklats för att fylla luckorna i materialdesignens arbetsflöde för hårdme- taller.

Hårdmetaller är metalliska kompositer som består av en hård fas, oftast WC, och ett segt bindemedel, vanligtvis Co-baserat, framställt genom pulvermetal- lurgi och sintring. Hårdmetaller är en väsentlig del av de flesta produktions- processer. Emellertid är Co-pulver klassificerat som ett cancerframkallande material med allvarliga hälsorisker, och de flesta jungfruliga Co-reservoarer finns i konfliktområden. Dessutom finns det monopol på marknaden för ren volfram. Därför skulle en minskning av förbrukningen av kobolt eller att ersät- ta den med andra ofarliga ämnen öka hållbarheten i produktionen av hårdme- tall. Dessutom kan framsteg inom produktionsteknik hjälpa till att övervin- na råvarubegränsningar. Ett sådant framsteg är “icke-homogena” strukturer och beräkiningsverktyg för optimering av produktmikrostruktur som är äm- net för denna avhandling. “Integrated Computational Materials Engineering (ICME)” och dess komplementärar verktyg, beräkning av fasdiagram (CALP- HAD) och ab-initio modellering, är verktyg som överbryggar experiment och modellering. Med hjälp av dessa verktyg föreslås och testas ett ramverk för materialdesign av icke-homogena hårdmetaller i denna avhandling.

Arbetsflödet för materialdesign av icke-homogen mikrostruktur och egen- skaper studerades påolika längdskalor. Atomistisk modellering med densitets- funktionsteori (DFT), ab-initio molekylär dynamik (AIMD) och generaliserad hydrodynamik (GHD) användes för att modellera viskositeten hos flytande Co-bindemedel. Rörligheten för Ti och Fe i oordnad BCC TiFe utvärderades med hjälp av nya experimentella data som samlats in från diffusionsparexpe- rimentet och EPMA-analys. Dessa två studier syftade till att komplettera de data som är nödvändiga för att studera hårdmetalls bearbetning och prestan- da. Bildandet av gradientzonen och γ-konstrukturen modellerades och utvär- derades experimentellt. En fenomenologisk modell för flytande fasmigrering (“ Liquid Phase Migration”, LPM) skapades och implementerades med hjälp av homogeniseringsmetoden. LPM-processen studerades experimentellt och mo- dellerades med YAPFI-mjukvaran. En studie av dessa processer var nödvän- dig för att koppla samman bearbetning och mikrostruktur. På prestandasidan studerades kemisk interaktion mellan skärverktyg och Ti-legeringar i detalj genom experiment och diffusionsmodellering. Dessutom användes hårdhets- och seghetsmodeller för att förutsäga hårdmetallers prestanda. Slutligen, med tillämpning av ICME och materialdesign, designades, producerades och tes- tades ett alternativt bindemedel med bestående av högentropilegering. ICME och CALPHAD genomsyrade hela forskningsprojekted. Studierna på olika längdskalor hjälpte till att bättre förstå bearbetning, mikrostruktur, egenska- per och prestanda hos hårdmetaller. Dessutom har nya verktyg och metoder utvecklats för att fylla luckorna i materialdesignens arbetsflöde för hårdme- taller.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2022. p. 55
Series
TRITA-ITM-AVL ; 2022:33
Keywords
cemented carbides, non-homogeneous structures, liquid phase migration, ICME, CALPHAD, materials design, viscosity, diffusion, mass transport, thermodynamics, kinetics, ab-initio
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-320106 (URN)978-91-8040-392-4 (ISBN)
Public defence
2022-11-18, D31 / https://kth-se.zoom.us/j/68323171363, Lindstedtsvägen 5, Stockholm, 09:00 (English)
Opponent
Supervisors
Projects
Sintering of non-homogeneous structures
Funder
Swedish Foundation for Strategic Research, RMA15-0062
Available from: 2022-10-25 Created: 2022-10-14 Last updated: 2022-11-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Salmasi, ArminLarsson, Henrik

Search in DiVA

By author/editor
Salmasi, ArminLarsson, Henrik
By organisation
Structures
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf