kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Use of improved Deep Learning and DeepSORT for Vehicle estimation
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Användning av förbättrad djupinlärning och DeepSORT för fordonsuppskattning (Swedish)
Abstract [en]

Intelligent Traffic System (ITS) has high application value in nowadays vehicle surveillance and future applications such as automated driving. The crucial part of ITS is to detect and track vehicles in real-time video stream with high accuracy and low GPU consumption. In this project, we select the YOLO version4 (YOLOv4) one-stage deep learning detector to generate bounding boxes with vehicle classes and location as well as confidence value, we select Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT) tracker to track vehicles using the output of YOLOv4 detector. Furthermore, in order to make the detector more adaptive to practical use, especially when the vehicle is small or obscured, we improved the detector’s structure by adding attention mechanisms and reducing parameters to detect vehicles with relatively high accuracy and low GPU memory usage. With the baseline model, results show that the YOLOv4 and DeepSORT vehicle detection could achieve 82.4% mean average precision among three vehicle classes with 63.945 MB parameters under 19.98 frames per second. After optimization, the improved model could achieve 85.84% mean average precision among three detection classes with 44.158MB parameters under 18.65 frames per second. Compared with original YOLOv4, the improved YOLOv4 detector could increase the mean average precision by 3.44% and largely reduced the parameters by 30.94% as well as maintaining high detection speed. This proves the validity and high applicability of the proposed improved YOLOv4 detector.

Abstract [sv]

Intelligenta trafiksystem har ett stort tillämpningsvärde i dagens fordonsövervakning och framtida tillämpningar som t.ex. automatiserad körning. Den avgörande delen av systemet är att upptäcka och spåra fordon i videoströmmar i realtid med hög noggrannhet och låg GPU-förbrukning. I det här projektet väljer vi YOLOv4-detektorn för djupinlärning i ett steg för att generera avgränsande rutor med fordonsklasser och lokalisering samt konfidensvärde, och vi väljer DeepSORT-tracker för att spåra fordon med hjälp av YOLOv4-detektorns resultat. För att göra detektorn mer anpassningsbar för praktisk användning, särskilt när fordonet är litet eller dolt, förbättrade vi dessutom detektorns struktur genom att lägga till uppmärksamhetsmekanismer och minska parametrarna för att upptäcka fordon med relativt hög noggrannhet och låg GPU-minneanvändning. Med basmodellen visar resultaten att YOLOv4 och DeepSORT fordonsdetektering kunde uppnå en genomsnittlig genomsnittlig precision på 82.4 % bland tre fordonsklasser med 63.945 MB parametrar under 19.98 bilder per sekund. Efter optimering kunde den förbättrade modellen uppnå 85.84% genomsnittlig precision bland tre detektionsklasser med 44.158 MB parametrar under 18.65 bilder per sekund. Jämfört med den ursprungliga YOLOv4-detektorn kunde den förbättrade YOLOv4-detektorn öka den genomsnittliga precisionen med 3.44 % och minska parametrarna med 30.94%, samtidigt som den bibehöll en hög detektionshastighet. Detta visar att den föreslagna förbättrade YOLOv4-detektorn är giltig och mycket användbar.

Place, publisher, year, edition, pages
2022. , p. 60
Series
TRITA-EECS-EX ; 2022:403
Keywords [en]
YOLOv4 algorithm, deep learning, DeepSORT, vehicle detection, attention mechanism, vehicle tracking
Keywords [sv]
YOLOv4-algoritmen, djupinlärning, DeepSORT, fordonsdetektering, fordonsspårning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-320457OAI: oai:DiVA.org:kth-320457DiVA, id: diva2:1705420
Supervisors
Examiners
Available from: 2022-10-24 Created: 2022-10-23 Last updated: 2022-10-24Bibliographically approved

Open Access in DiVA

fulltext(9486 kB)2031 downloads
File information
File name FULLTEXT01.pdfFile size 9486 kBChecksum SHA-512
752d9bb322c3373cc8b5f769c6045857f0f8ccfcacf88cb9a4ed2f168c85a67e194ee89d6d18ac107031fdcf88462490704e016e7fd6c230737503f91b577943
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2033 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 504 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf