kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On Magnetosheath Jet Kinetic Structure and Plasma Properties
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.ORCID iD: 0000-0002-4381-3197
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.ORCID iD: 0000-0003-1270-1616
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.ORCID iD: 0000-0003-1654-841X
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

High-speed plasma jets downstream of Earth's bow shock are high velocity streams associated with a variety of shock and magnetospheric phenomena. In this work, using the Magnetosphere Multiscale mission, we study the properties of a jet found downstream of the quasi-parallel bow shock using high-resolution (burst) data. By doing so, we demonstrate how the jet is an inherently kinetic structure described by highly variable velocity distributions. The observed distributions show the presence of two plasma population, a cold/fast jet and a hotter/slower background population. We derive partial moments for the jet population to isolate its properties. The resulting partial moments appear different from the full ones which are typically used in similar studies. These discrepancies show how jets are more similar to upstream solar wind beams compared to what was previously believed. Finally, we explore the consequences of our results and methodology regarding the characterization, origin, and evolution of jets.

National Category
Fusion, Plasma and Space Physics
Research subject
Physics; Physics
Identifiers
URN: urn:nbn:se:kth:diva-320536OAI: oai:DiVA.org:kth-320536DiVA, id: diva2:1706147
Note

(Accepted, to be published on Geophysical Research Letters), QC 20221026

Available from: 2022-10-25 Created: 2022-10-25 Last updated: 2022-10-26Bibliographically approved
In thesis
1. High-speed jets and related phenomena at Earth's bow shock and magnetosheath
Open this publication in new window or tab >>High-speed jets and related phenomena at Earth's bow shock and magnetosheath
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Magnetosheath high-speed jets are transient and localized dynamic pressure enhancements downstream of Earth’s bow shock. Their formation has been associated with several mechanisms, including solar transient events and the dynamical evolution of the bow shock. After their formation, jets interact with the background magnetosheath population, exciting various waves and accelerating particles. When they reach the magnetosphere, they can penetrate the magnetopause, drive surface waves, and cause magnetopause reconnection. Their effects to the inner geospace environment can be seen through substorm activity and ground magnetometer measurements. In this thesis, a series of papers on the formation, evolution and statistical properties of jets is presented. Most of the work is done using NASA’s Magnetosphere Multiscale (MMS) mission, while other missions like THEMIS and upstream solar wind monitors (e.g., ACE and Wind) are also used. For our analysis, we also make complementary use of neural networks and computer simulations. Our investigation initially showed the importance of classifying jets based on the shock orientation and interplanetary magnetic field (IMF), resulting in an open-access database of magnetosheath jets using MMS. This dataset was then used to derive statistical properties for each class of magnetosheath jets (Paper I). The jets were also classified using neural networks (Paper II), while a comparison between their statistical properties and computer simulated jets was performed (Paper III). Another aspect we investigated through multi-point measurements is the excitation of waves due to the interaction of jets with the magnetosheath (Paper IV). We then focused on the formation and evolution of jets close to the Earth’s bow shock. We showed direct in-situ evidence that shock reformation and the evolution of upstream waves can generate downstream high-speed jets (Paper V). By evaluating the properties of jets on a kinetic level, we demonstrated that jets exhibit complex velocity distribution functions (VDFs) throughout their lifetime. Deriving partial plasma moments to isolate the jet from the background population, we revealed the limitations of studying these phenomena from a single-fluid perspective and how the derived partial plasma moments are related to the upstream solar wind and its foreshock structures (Paper VI).

Abstract [sv]

Plasmajetar i magnetoskiktet är transienta och lokaliserade förhöjningar av det dynamiska trycket nedströms om jordens bogchock. Flera olika generationsmekanismer har föreslagits, t ex transienta strukturer i solvinden eller dynamisk omformning av bogchocken. Efter att de har genererats vid bogchocken växelverkar de med bakgrundsplasmat i magnetoskiktet, där de exciterar plasmavågor och accelererar partiklar. När de når magnetopausen kan de korsa den, driva ytvågor, eller initiera magnetisk omkoppling. Plasmajetars effekt på rymdmiljön nära Jorden manifesterar sig genom substormar och markbaserade mätningar av jordens magnetfält. Denna avhandling innehåller att antal artiklar om genereringen, utvecklingen och de statistiska egenskaperna hos plasmajetar. Huvuddelen av arbetet är baserad på mätningar från NASAs MMS-satelliter, tillsammans med kompletterande data från andra satellitmissioner, som THEMIS och solavindsmonitorer (t ex  ACE och Wind). För dataanalysen använder vi också neurala nätverk och plasmasimuleringar. Våra första resultat visade på vikten av att klassificera jetar baserat på relationen mellan bogchockens orientering och riktningen på det interplanetära magnetfältet. Denna klassificering resulterade i en offentligt tillgänglig databas, innehållande MMS-observationer av plasmajetar. Detta dataset användes för att bestämma jetarnas statistiska egenskaper för de olika klasserna (Artikel I), vilket följdes upp med en klassificering baserade på neurala nätverk (Artikel II), vilket jämfördes med plasmasimuleringar (Artikel III). En ytterligare egenskap hos plasmajetar, excitation av plasmavågor, undersöktes med flerpunktsmätningar (Artikel IV). Därefter fokuserade vi på genereringen och evolutionen av jetar nära jordens bogchock. Vi visar att direkta in situ-mätningar tyder på att dynamisk omformning av bogchocken och vågor uppströms om den kan generera plasmajetar i magnetoskiktet (Artikel V). Genom att studera jetars plasmakinetiska egenskaper visar vi också att deras distributionsfunktioner uppvisat ett komplext beteende under jetarnas livstid. Beräkningar av partiella plasmamoment för att isolera jetarna från bakgrundsplasmat visar på begränsningarna i att betrakta dessa fenomen som en enkel fluid, och hur momenten är relaterade till solvinden uppströms om bogchocken (Artikel VI).

Place, publisher, year, edition, pages
Sweden: KTH Royal Institute of Technology, 2022. p. xvi, 94
Series
TRITA-EECS-AVL ; 2022:67
Keywords
magnetosheath, solar wind, bow shock, plasma, collisionless shock
National Category
Fusion, Plasma and Space Physics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-320538 (URN)978-91-8040-390-0 (ISBN)
Public defence
2022-11-23, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish National Space Board, 90/17
Note

QC 20221031

Available from: 2022-10-31 Created: 2022-10-25 Last updated: 2022-10-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Raptis, SavvasKarlsson, TomasVaivads, AndrisLindberg, Martin

Search in DiVA

By author/editor
Raptis, SavvasKarlsson, TomasVaivads, AndrisLindberg, Martin
By organisation
Space and Plasma Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 135 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf