kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carrier dynamics in blue and green InGaN LED structures
KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics. (Group of Prof. Saulius Marcinkevičius)ORCID iD: 0000-0001-8496-9668
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on effects that are critical to achieving high internal quantum efficiency (IQE) in GaN-based light-emitting diodes (LEDs) that emit in a broad spectral range, from violet to green-yellow. These effects include interwell carrier transport in multiple quantum well (QW) structures, lateral transport in the QW plane, and radiative and nonradiative recombination. 

The investigation is conducted with the time-integrated and time-resolved near- and far-field photoluminescence (PL) spectroscopy. Measurements are performed on polar single and multiple InxGa1-xN QW structures of different alloy compositions, which are supplemented with a self-consistent solution of one-dimensional Schrödinger and Poisson equations and an evaluation of the carrier density dynamics. 

Interwell carrier transport is studied to determine the conditions required for a uniform interwell carrier distribution in an LED active region. Such a distribution would decrease the detrimental impact of the nonradiative Auger recombination and increase the IQE. Since the hole transport is the bottleneck for this process, ambipolar interwell transport, determined by the slower holes, is studied. Standard time-resolved PL measurements are performed on multiple QW structures with a different number of In0.12Ga0.88N QWs and different barrier parameters in terms of thickness and material. Photoexcited carrier transport over the multiple QW structure is monitored by measuring PL rise times from a deeper detector QW. Such measurements make it possible to distinguish the interwell transport mechanism at high temperatures (e.g., thermionic emission - ns range) and low temperatures (e.g., ballistic - sub-ps range). In standard InGaN/GaN structures, the interwell hole transport is found to be inefficient. Studies of transport and IQE in structures with InGaN barriers of different compositions, as well as thin GaN or AlGaN interlayers between the QWs and barriers, allowed the design of structures with fast, efficient interwell transport and high IQE. These measurements are performed for blue LED structures; however, the conclusions could be extended to QWs emitting at longer wavelengths, for which the issue of the nonuniform interwell carrier distribution is even more severe. 

Studies of the carrier recombination and IQE are performed on single QWs with a focus on long wavelength (green, green-yellow) emitting structures, in which the IQE is much smaller than for the violet and blue-emitting wells. Radiative and nonradiative carrier recombination times are determined at different temperatures, revealing a record-high IQE of ∼60% in the green-yellow QWs. 

Since nonradiative recombination is often assigned to extended defects, near-field spectroscopy is applied to study the impact of V-defects related to dislocations in polar GaN-based structures. The parameters of PL spectra, as well as radiative and nonradiative recombination times, show large spatial variations. The increased nonradiative recombination related to the dislocations is revealed only in their immediate vicinity, suggesting that their impact on the IQE and device performance, contrary to common belief, should be small.

Abstract [sv]

Avhandlingen fokuserar på effekter som är avgörande för att uppnå hög intern kvanteffektivitet (IQE) i GaN-baserade lysdioder (LED) som emitterar inom ett brett spektralområde, från violett till gröngult. Dessa effekter inkluderar laddningsbärartransport mellan brunnar i flera kvantbrunnar (QW)-strukturer, lateral transport i QW-planet och strålnings- och icke-strålningsrekombination. 

Undersökningen gjordes genom tidsintegrerad och tidsupplöst fotoluminescensspektroskopi (PL) i när- och fjärrfält. Mätningar utfördes på polära enkla och multipla InxGa1-xN QW-strukturer bestående av olika legeringssammansättningar. De kompletterades med självkonsistent lösning av endimensionella Schrödinger- och Poisson-ekvationer och utvärdering av bärardensitetsdynamiken. 

Laddningsbärartransporten mellan brunnar studerades för att bestämma förhållanden som krävs för en enhetlig bärarfördelning mellan brunnar i en aktiv LED-region. Sådan distribution skulle minska den skadliga effekten av den icke-strålande Auger-rekombinationen och öka IQE. Eftersom håltransporten är flaskhalsen under denna process, studerades ambipolär transport mellan brunnar, utifrån de långsammare hålen. Standard tidsupplösta PL-mätningar utfördes på flera QW-strukturer med olika antal In0,12Ga0,88N QW:er och olika barriärparametrar (tjocklek, material). Fotoexciterad bärartransport över den multipla QW-strukturen övervakades genom att mäta PL-stigningstider från en djupare detektor-QW. Sådana mätningar gjorde det möjligt att särskilja transportmekanismen mellan brunnar vid höga temperaturer (termionisk emission, ns-intervall) och låga temperaturer (ballistiskt, sub-ps-intervall). Det konstaterades att håltransporten mellan brunnar i standard InGaN/GaN-strukturer var ineffektiv. Studier av transport och IQE i strukturer med InGaN-barriärer av olika sammansättning, och tunna GaN- eller AlGaN-mellanskikt mellan QW:erna och barriärer möjliggjorde design av strukturer med snabb och effektiv transport mellan brunnar och hög IQE. Dessa mätningar utfördes för blå LED-strukturer; dock skulle slutsatserna kunna utvidgas till QW:er som emitterar vid längre våglängder och för vilka problemet med olikformig bärarfördelningen mellan brunnar är ännu större.

Studier av laddningsbärarrekombinationen och IQE utfördes på enstaka kvantbrunnar med fokus på emitterande strukturer med lång våglängd (grön, grön-gul), där IQE är mycket mindre än för de violett och blåemitterande brunnarna. Strålande och icke-strålande bärarekombinationstider bestämdes vid olika temperaturer, vilket avslöjade en rekordhög IQE på ∼60 % i de gröngula QW:erna. 

Eftersom den icke-strålande rekombinationen ofta tillskrivs utökade defekter, användes närfältsspektroskopi för att studera effekten av V-defekter relaterade till dislokationer i polära GaN-baserade strukturer. Parametrar för PL-spektra, samt strålande och icke-strålande rekombinationstider visade stora rumsliga variationer. Den ökade ickestrålande rekombinationen relaterad till dislokationerna avslöjades endast i deras omedelbara närhet, vilket tyder på att deras inverkan på IQE och enhetens prestanda, i motsats till vad man tror, borde vara liten.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 95
Series
TRITA-SCI-FOU ; 2022:56
Keywords [en]
InGaN quantum wells, interwell transport, near-field scanning optical microscopy, internal quantum efficiency, V-defects
Keywords [sv]
InGaN-kvantbrunnar, transport mellan brunnar, optisk mikroskopi med närafältsskanning, intern kvanteffektivitet, V-defekter
National Category
Physical Sciences
Research subject
Physics; Physics, Optics and Photonics
Identifiers
URN: urn:nbn:se:kth:diva-320563ISBN: 978-91-8040-411-2 (print)OAI: oai:DiVA.org:kth-320563DiVA, id: diva2:1706257
Public defence
2022-11-25, (Room 4205), Hannes Alfvéns väg 12, Alba Nova, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 218-04783Swedish Energy Agency, 45390-1Available from: 2022-10-28 Created: 2022-10-25 Last updated: 2022-10-31Bibliographically approved
List of papers
1. Interwell carrier transport in InGaN/(In)GaN multiple quantum wells
Open this publication in new window or tab >>Interwell carrier transport in InGaN/(In)GaN multiple quantum wells
Show others...
2019 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 114, no 15, article id 151103Article in journal (Refereed) Published
Abstract [en]

Uniform carrier distribution between quantum wells (QWs) of multiple QW light emitting diodes (LEDs) and laser diodes is important for the efficiency of device operation. In lasers, the uniform distribution ensures that all the QWs contribute to lasing; in LEDs, it enables high power operation with minimal Auger losses and a maximal efficiency. The carrier distribution between the QWs takes place via interwell (IW) transport. In polar GaN-based structures, the transport might be hindered by the strong carrier confinement and the internal electric fields. In this work, we study the IW transport in InGaN/(In)GaN multiple QW structures typical for ultraviolet-emitting devices with different well and barrier parameters. Experiments have been performed by means of time-resolved photoluminescence. We find that the IW transport rate is limited by the hole thermionic emission, which for InGaN/GaN QWs produces long transport times, similar to 1 ns per well, and a nonuniform IW carrier distribution. However, adding 5% In to the barriers completely changes the situation with the transport time decreasing by a factor of four and the hole thermionic emission energy from 200 meV to 70 meV. This study shows that using InGaN barriers is a promising pathway toward efficient high power InGaN LEDs. Published under license by AIP Publishing.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2019
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-251713 (URN)10.1063/1.5092585 (DOI)000465439100004 ()2-s2.0-85065611404 (Scopus ID)
Note

QC 20190521

Available from: 2019-05-21 Created: 2019-05-21 Last updated: 2024-03-15Bibliographically approved
2. Optimization of barrier height in InGaN quantum wells for rapid interwell carrier transport and low nonradiative recombination
Open this publication in new window or tab >>Optimization of barrier height in InGaN quantum wells for rapid interwell carrier transport and low nonradiative recombination
Show others...
2020 (English)In: Applied Physics Expres, ISSN 1882-0778, Vol. 13, no 12, article id 122005Article in journal (Refereed) Published
Abstract [en]

Rapid interwell carrier transport is a key process for a uniform carrier distribution and reduced Auger recombination in multiple quantum well (MQW) light emitting devices. In this work, the interwell transport has been studied by time-resolved photoluminescence in In0.12Ga0.88N MQWs with InxGa1-xN (x = 0 0.06) and Al0.065Ga0.935N barriers. Only for the InGaN barriers the transport is efficient. However, introduction of In into the barriers is accompanied by an increase of the nonradiative recombination at QW interfaces. Still, even with the increased Shockley-Read-Hall recombination, structures with InGaN barriers might be advantageous for high power devices because of the reduced Auger recombination.

Place, publisher, year, edition, pages
IOP Publishing, 2020
Keywords
Interwell carrier transport, group-III-nitrides, Time-resolved photoluminescence, carrier recombination
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-287403 (URN)10.35848/1882-0786/abc856 (DOI)000591070000001 ()2-s2.0-85097127252 (Scopus ID)
Note

QC 20210215

Available from: 2020-12-15 Created: 2020-12-15 Last updated: 2022-10-25Bibliographically approved
3. Optimization of InGaN quantum well interfaces for fast interwell carrier transport and low nonradiative recombination
Open this publication in new window or tab >>Optimization of InGaN quantum well interfaces for fast interwell carrier transport and low nonradiative recombination
Show others...
2022 (English)In: Gallium Nitride Materials and Devices XVII / [ed] Fujioka, H Morkoc, H Schwarz, UT, SPIE-Intl Soc Optical Eng , 2022, Vol. 12001, article id 1200104Conference paper, Published paper (Refereed)
Abstract [en]

Efficient high-power operation of light emitting diodes based on InGaN quantum wells (QWs) requires rapid interwell hole transport and low nonradiative recombination. The transport rate can be increased by replacing GaN barriers with that of InGaN. Introduction of InGaN barriers, however, increases the rate of the nonradiative recombination. In this work, we have attempted to reduce the negative impact of the nonradiative recombination by introducing thin GaN or AlGaN interlayers at the QW/barrier interfaces. The interlayers, indeed, reduce the nonradiative recombination rate and increase the internal quantum efficiency by about 10%. Furthermore, the interlayers do not substantially slow down the interwell hole transport; for 0.5 nm Al0.10Ga0.90N interlayers the transport rate has even been found to increase. Another positive feature of the interlayers is narrowing of the QW PL linewidth, which is attributed to smoother QW interfaces and reduced fluctuations of the QW width.

Place, publisher, year, edition, pages
SPIE-Intl Soc Optical Eng, 2022
Series
Proceedings of SPIE, ISSN 0277-786X
Keywords
InGaN, quantum wells, LED, carrier transport, nonradiative recombination, internal quantum efficiency
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:kth:diva-316432 (URN)10.1117/12.2608695 (DOI)000836321400003 ()2-s2.0-85131224841 (Scopus ID)
Conference
Conference on Gallium Nitride Materials and Devices XVII at SPIE OPTO Conference, JAN 22-FEB 28, 2022, ELECTR NETWORK
Note

Part of proceedings: ISBN 978-1-5106-4874-6, ISBN 978-1-5106-4873-9

QC 20220818

Available from: 2022-08-18 Created: 2022-08-18 Last updated: 2023-01-26Bibliographically approved
4. Low-temperature carrier transport across InGaN multiple quantum wells: Evidence of ballistic hole transport
Open this publication in new window or tab >>Low-temperature carrier transport across InGaN multiple quantum wells: Evidence of ballistic hole transport
Show others...
2020 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 101, no 7, article id 075305Article in journal (Refereed) Published
Abstract [en]

Carrier transport across polar n-type InGaN/GaN multiple quantum wells (MQWs) has been studied by time-resolved photoluminescence (PL) using an optical marker technique. Efficiency of the hole transfer into the marker well experienced a nonmonotonous temperature dependence. First, as the temperature was lowered below room temperature, the number of transferred holes decreased because of the decreased efficiency of the thermionic emission. However, when the temperature was lowered below similar to 80 K, the number of transferred holes experienced a significant rise. In addition, the low-temperature hole transport across the MQW structure was very fast, <3 ps. These features indicate that the low-temperature hole transport across the MQWs is ballistic or quasiballistic. Comparison of PL data for structures with different MQW parameters suggests that at low temperatures the hole mean-free path is about 10 nm. Probably, hole transport via light hole and split-off valence bands contributes to this high value.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2020
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-270893 (URN)10.1103/PhysRevB.101.075305 (DOI)000514175000013 ()2-s2.0-85079794699 (Scopus ID)
Note

QC 20200324

Available from: 2020-03-24 Created: 2020-03-24 Last updated: 2022-10-25Bibliographically approved
5. High internal quantum efficiency of long wavelength InGaN quantum wells
Open this publication in new window or tab >>High internal quantum efficiency of long wavelength InGaN quantum wells
Show others...
2021 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 119, no 7, article id 071102Article in journal (Refereed) Published
Abstract [en]

Time-resolved and quasi-cw photoluminescence (PL) spectroscopy was applied to measure the internal quantum efficiency (IQE) of c-plane InGaN single quantum wells (QWs) grown on sapphire substrates using metal-organic chemical vapor deposition. The identical temperature dependence of the PL decay times and radiative recombination times at low temperatures confirmed that the low temperature IQE is 100%, which allowed evaluation of the absolute IQE at elevated temperatures. At 300 K, the IQE for QWs emitting in green and green-yellow spectral regions was more than 60%. The weak nonradiative recombination in QWs with a substantial concentration of threading dislocations and V-defects (similar to 2 x 10(8) cm(-2)) shows that these extended defects do not notably affect the carrier recombination.

Place, publisher, year, edition, pages
AIP Publishing, 2021
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-300845 (URN)10.1063/5.0063237 (DOI)000685871700010 ()2-s2.0-85113424986 (Scopus ID)
Note

QC 20210928

Available from: 2021-09-28 Created: 2021-09-28 Last updated: 2022-10-25Bibliographically approved
6. Variations of light emission and carrier dynamics around V-defects in InGaN quantum wells
Open this publication in new window or tab >>Variations of light emission and carrier dynamics around V-defects in InGaN quantum wells
Show others...
2020 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 128, no 22, article id 225703Article in journal (Refereed) Published
Abstract [en]

Time- and spectrally-resolved scanning near-field optical microscopy was applied to study spatial variations of photoluminescence (PL) spectra and carrier dynamics in polar InGaN/GaN single quantum wells (QWs) emitting from 410nm to 570nm. The main attention was devoted to variations of PL properties and carrier dynamics around V-defects. The PL intensity, peak wavelength, and linewidth, as well as the radiative and nonradiative recombination times, were found to be different in V-defect-rich and defect-free regions. The radiative lifetime close to the defects was longer up to several times, which is attributed to an increased electron and hole wave function separation in the QW plane. PL decay times, measured using excitation and collection through the near-field probe, were one to two orders of magnitude shorter than PL decay times measured in the far field. This shows that the near-field PL decay and the integrated PL intensity are primarily determined by the carrier out-diffusion from under the probe. Only in the immediate vicinity of the V-defects, the near-field PL decays due to the nonradiative recombination at dislocations. The area of such enhanced nonradiative recombination is limited to just a few percent of the total QW area. This shows that recombination via dislocations and V-defects does not play a decisive role in the overall nonradiative recombination and internal quantum efficiency of polar InGaN/GaN QWs.

Place, publisher, year, edition, pages
AIP Publishing, 2020
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-288738 (URN)10.1063/5.0031863 (DOI)000598506000003 ()
Note

QC 20210210

Available from: 2021-01-13 Created: 2021-01-13 Last updated: 2022-10-25Bibliographically approved

Open Access in DiVA

Rinat Yapparov_kappa(4631 kB)384 downloads
File information
File name FULLTEXT01.pdfFile size 4631 kBChecksum SHA-512
c75aa67ab3cd70d934f8584759855f15f1de5dd0d2cae946611a93e02b05b9ba4a9be98aaac2752446765cffe97c89b58cadd24723611922a6437b6680d43073
Type fulltextMimetype application/pdf

Authority records

Yapparov, Rinat

Search in DiVA

By author/editor
Yapparov, Rinat
By organisation
Photonics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 387 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 908 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf