kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Physics Informed Neural Networks for Power Transformer Dynamic Thermal Modelling
Hitachi Energy, Hitachi Energy Res, Västerås, Sweden..
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0002-4065-715x
Hitachi Energy, Hitachi Energy Res, Västerås, Sweden..
2022 (English)In: IFAC Papersonline, Elsevier BV , 2022, Vol. 55, no 20, p. 49-54Conference paper, Published paper (Refereed)
Abstract [en]

The emerging methodology of Physics Informed Neural Networks (PINNs) promises to combine available data and physical knowledge to achieve high accuracy and fast evaluation. Dynamic thermal modelling of power transformers is an application specifically set to benefit from these characteristics. Data collected during typical operation is not representative of extreme loading scenarios and the number of thermal sensors is limited. The detailed geometry is often not known by the asset owner which creates high uncertainty for physics-based simulation models. In this study, the transformer is modeled by the one-dimensional heat diffusion equation. PINN is constructed with a loss function including both data-based and physics-based terms. A time-dependent source term from a time series of measurement is also part of the PINN. The result is compared with a finite volume solution demonstrating good agreement. The PINN approach will be useful for further development in thermal modelling for power transformers. Copyright

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 55, no 20, p. 49-54
Keywords [en]
Machine learning and artificial intelligence for modelling, Physics-Informed Neural Networks, Finite Volume Method, Comparison of methods, Environmental systems, Energy Systems
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-320496DOI: 10.1016/j.ifacol.2022.09.070ISI: 000860842100009Scopus ID: 2-s2.0-85142303301OAI: oai:DiVA.org:kth-320496DiVA, id: diva2:1706448
Conference
10th Vienna International Conference on Mathematical Modelling (MATHMOD), JUL 27-29, 2022, Tech Univ Wien, ELECTR NETWORK
Note

QC 20221026

Available from: 2022-10-26 Created: 2022-10-26 Last updated: 2023-10-09Bibliographically approved
In thesis
1. Physics-Informed Neural Networks and Machine Learning Algorithms for Sustainability Advancements in Power Systems Components
Open this publication in new window or tab >>Physics-Informed Neural Networks and Machine Learning Algorithms for Sustainability Advancements in Power Systems Components
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

A power system consists of several critical components necessary for providing electricity from the producers to the consumers. Monitoring the lifetime of power system components becomes vital since they are subjected to electrical currents and high temperatures, which affect their ageing. Estimating the component's ageing rate close to the end of its lifetime is the motivation behind our project. Knowing the ageing rate and life expectancy, we can possibly better utilize and re-utilize existing power components and their parts. In return, we could achieve better material utilization, reduce costs, and improve sustainability designs, contributing to the circular industry development of power system components. Monitoring the thermal distribution and the degradation of the insulation materials informs the estimation of the components' health state. Moreover, further study of the employed paper material of their insulation system can lead to a deeper understanding of its thermal characterization and a possible consequent improvement.

Our study aims to create a model that couples the physical equations that govern the deterioration of the insulation systems of power components with modern machine learning algorithms. 

As the data is limited and complex in the field of components' ageing, Physics-Informed Neural Networks (PINNs) can help to overcome the problem. PINNs exploit the prior knowledge stored in partial differential equations (PDEs) or ordinary differential equations (ODEs) modelling the involved systems. This prior knowledge becomes a regularization agent, constraining the space of available solutions and consequently reducing the training data needed. 

This thesis is divided into two parts: the first focuses on the insulation system of power transformers, and the second is an exploration of the paper material concentrating on cellulose nanofibrils (CNFs) classification. The first part includes modelling the thermal distribution and the degradation of the cellulose inside the power transformer. The deterioration of one of the two systems can lead to severe consequences for the other. Both abilities of PINNs to approximate the solution of the equations and to find the parameters that best describe the data are explored. The second part could be conceived as a standalone; however, it leads to a further understanding of the paper material. Several CNFs materials and concentrations are presented, and this thesis proposes a basic unsupervised learning using clustering algorithms like k-means and Gaussian Mixture Models (GMMs) for their classification. 

Abstract [sv]

Ett kraftsystem består av många kritiska komponenter som är nödvändiga för att leverera el från producenter till konsumenter. Att övervaka livslängden på kraftsystemets komponenter är avgörande eftersom de utsätts för elektriska strömmar och höga temperaturer som påverkar deras åldrande. Att uppskatta komponentens åldringshastighet nära slutet av dess livslängd är motivationen bakom vårt projekt. Genom att känna till åldringshastigheten och den förväntade livslängden kan vi eventuellt utnyttja och återanvända befintliga kraftkomponenter och deras delar   bättre. I gengäld kan vi uppnå bättre materialutnyttjande, minska kostnaderna och förbättra hållbarhetsdesignen vilket bidrar till den cirkulära industriutvecklingen av kraftsystemskomponenter. Övervakning av värmefördelningen och nedbrytningen av isoleringsmaterialen indikerar komponenternas hälsotillstånd. Dessutom kan ytterligare studier av pappersmaterial i kraftkomponenternas isoleringssystem leda till en djupare förståelse av dess termiska karaktärisering och en möjlig förbättring. 

Vår studie syftar till att skapa en modell som kombinerar de fysiska ekvationer som styr försämringen av isoleringssystemen i kraftkomponenter med moderna algoritmer för maskininlärning.

Eftersom datan är begränsad och komplex när det gäller komponenters åldrande kan  fysikinformerade neurala nätverk (PINNs) hjälpa till att lösa problemet. PINNs utnyttjar den förkunskap som finns lagrad i partiella differentialekvationer (PDE) eller ordinära differentialekvationer (ODE) för att modellera system och använder dessa ekvationer för att begränsa antalet tillgängliga lösningar och därmed minska den mängd träningsdata som behövs. 

Denna avhandling är uppdelad i två delar: den första fokuserar på krafttransformatorers isoleringssystem, och den andra är en undersökning av pappersmaterialet som används med fokus på klassificering av cellulosananofibriller (CNF). Den första delen omfattar modellering av värmefördelningen och nedbrytningen av cellulosan inuti krafttransformatorn. En försämring av ett av de två systemen kan leda till allvarliga konsekvenser för det andra. Både PINNs förmåga att approximera lösningen av ekvationerna och att hitta de parametrar som bäst beskriver datan undersöks. Den andra delen skulle kunna ses som en fristående del, men den leder till en utökad förståelse av själva pappersmaterialet. Flera CNF-material och koncentrationer presenteras och denna avhandling föreslår en simpel oövervakad inlärning med klusteralgoritmer som k-means och Gaussian Mixture Models (GMMs) för deras klassificering.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. 71
Series
TRITA-EECS-AVL ; 2023:69
Keywords
Physics-Informed Neural Networks, Machine Learning, Data-Driven Methods, Circular Economy, Power Systems Components, Sustainability, Cellulose Nanofibrils, Fysikinformerade Neurala Nätverk, Maskininlärning, Datadrivna Metoder, Cirkulär Ekonomi, Kraftsystemets Komponenter, Hållbarhet, Cellulosananofibriller
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-337846 (URN)978-91-8040-723-6 (ISBN)
Presentation
2023-11-03, Room 3412, Sten Velander https://kth-se.zoom.us/j/62590383218, Teknikringen 33, KTH, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Vinnova, 2021-03748
Note

QC 20231010

Available from: 2023-10-10 Created: 2023-10-09 Last updated: 2023-10-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bragone, FedericaMorozovska, Kateryna

Search in DiVA

By author/editor
Bragone, FedericaMorozovska, Kateryna
By organisation
Computational Science and Technology (CST)
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 228 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf