kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detecting Chargebacks in Transaction Data with Artificial Neural Networks
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Upptäcka återbetalningar i transaktionsdata med artificiella neurala nätverk (Swedish)
Abstract [en]

The chargeback process is costly for the merchant. Not only does the merchant lose the revenue from the purchase, but it must also pay handling fees to the bank and risks never getting paid for provided service. The purpose of this study is to examine and investigate how to prognosticate future chargebacks by using machine learning in form of Artificial Neural Network on transaction data. Doing so can be used to minimize and decrease financial costs for the merchant. The study indicates that it’s complex to prognosticate chargebacks, but illuminates that it’s possible under certain circumstances. The created model has been concluded to be more suitable as a compliment, rather than a substitute for the current Rule-Based classification system. The model should be implemented based on economic analysis since it can be used to reduce costs and contribute to profitability over time. Furthermore, the study highlight lessons learned and complementary research areas for future studies.

Abstract [sv]

Återbetalningar medför stora kostnader för handlare i form av förlorade intäkter vid återbetalning av transaktionssumman, samt tillkommande handläggningsavgifter i processen. Syftet med rapporten är att utvärdera och undersöka möjligheten att prognostisera framtida återbetalningar, genom att applicera maskininlärning i form av Artificiellt Neuralt Nätverk på transaktionsdata. På så sätt kan återbetalningar minimeras och reducera finansiella kostnader hos handlaren. Studien påvisar att det är komplext att predicera återbetalningar, men att det är möjligt under särskilda omständigheter. Modellen som skapats har konstaterats mer lämpad som ett komplement till det aktuella regelbaserade klassificeringssystemet än ett substitut. Utifrån en ekonomisk analys klargörs att algoritmen bör implementeras för att reducera kostnader och på sikt bidra till lönsamhet. Studien belyser även lärdomar, samt kompletterande forskningsområden för framtida studier.

Place, publisher, year, edition, pages
2022. , p. 10
Series
TRITA-EECS-EX ; 2022:423
Keywords [en]
Artificial Neural network, Chargeback, Fraud, Machine learning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-320594OAI: oai:DiVA.org:kth-320594DiVA, id: diva2:1706610
Supervisors
Examiners
Available from: 2022-10-28 Created: 2022-10-26 Last updated: 2022-10-28Bibliographically approved

Open Access in DiVA

fulltext(545 kB)1092 downloads
File information
File name FULLTEXT01.pdfFile size 545 kBChecksum SHA-512
f55768e25101503bd8c598d7b46db77027e5952ab961d5f3a662a85b08784d64fe0908bfded131631881963fc00126dccbbc3de8ed074e89c5b2fdbd53261a1d
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1092 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 829 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf