kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Rubric for Implementing Explainable AI in Production Logistics
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Processledning och hållbar produktion.ORCID iD: 0000-0002-4566-0171
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Processledning och hållbar produktion. KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Avancerad underhållsteknik och produktionslogistik.ORCID iD: 0000-0003-0798-0753
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Processledning och hållbar produktion.ORCID iD: 0000-0003-1878-773x
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Avancerad underhållsteknik och produktionslogistik.ORCID iD: 0000-0001-7935-8811
2022 (English)In: Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action, Seoul, Korea: Springer Nature , 2022, Vol. 663, p. 190-197Conference paper, Published paper (Refereed)
Abstract [en]

With the advent of Industry 4.0, the world is witnessing increasing use of data and data-driven services. This phenomenon has penetrated through different sectors of production including logistics. The purpose of this study is to explore the use of Artificial Intelligence (AI) and Machine Learning (ML) in production logistics. This paper is the first step in the direction of understanding the complexity of AI and ML algorithms and thus explaining the black-box-like characteristics of these algorithms. This is coupled with the definition of eXplainable AI (XAI) in the domain. The paper furthers describes the needs for XAI and consequently presents a rubric for implementing XAI in the domain of production logistics and discusses it in detail.

Place, publisher, year, edition, pages
Seoul, Korea: Springer Nature , 2022. Vol. 663, p. 190-197
Keywords [en]
production logistics, explainable artificial intelligence, explainability, interpretability
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Industrial Engineering and Management
Identifiers
URN: urn:nbn:se:kth:diva-320636DOI: 10.1007/978-3-031-16407-1_23ISI: 000869718800023Scopus ID: 2-s2.0-85140456799OAI: oai:DiVA.org:kth-320636DiVA, id: diva2:1706849
Conference
APMS 2022
Funder
Vinnova, S5014
Note

QC 20221028

Available from: 2022-10-27 Created: 2022-10-27 Last updated: 2023-09-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Singh, AmitaFlores-García, ErikJeong, YongkukWiktorsson, Magnus

Search in DiVA

By author/editor
Singh, AmitaFlores-García, ErikJeong, YongkukWiktorsson, Magnus
By organisation
Processledning och hållbar produktionAvancerad underhållsteknik och produktionslogistik
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 138 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf