kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Banfoljning och Styrning av en Autonom Hjullastare medelst Modell-prediktiv Reglering
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
2022 (Swedish)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Path Following Control for an Autonomous Wheel Loader Using Model Predictive Control (English)
Abstract [sv]

Framsteg inom teknik gör maskinintelligens möjlig med fördelar i kostnad, säkerhet och hållbarhet. Volvo CE har introducerat ett autonomt hjullastarkocept, då de rör sig mot automation och maskinintelligens inom byggbranchen. 

Som bidrog till detta forskningsfält utforskar denna avhandling fyra olika banföjlningsalogritmer - pure-pursuit, optimized look-ahead distance pure-pursuit algorithm(OLDPPA), Stanley och successiv linjäriserad modellprediktiv reglering (MPC) - och jämför med avseende på beräkningsbelastning, vägavvikelse, energieffektivitet och robusthet mot störningar.

En dynamisk bicycle-modell utvecklades och validerades mot en nerskalad hjullastarprototyp. Parametrar från den fysiska prototypen som användes i fordonsmodellen mättes genom empiriska experiment. Därefter testades regleralgoritmerna på fordonsmodellen med hjälp av flera slumpmässiga vägar genererade av en RRT*-algoritm.

Resultaten visar att MPC är mer beräkningstung, men har fördelar i prestanda och robusthet mot störningar. OLDPPA producerade större vägavvikelse an pure-pursuit-algoritmen med ett fast look-ahead-avstånd, vilket motsäger vad tidigare studier har visat. Pure-pursuit-algoritmen visade prestanda jämförbar med MPC men var mer mottaglig för störningar, medan Stanley-regulatorn visade motsatta resultat. Förutom att följa vägen föreslås en utvidgning av MPC-arkitekturen för att möjliggöra punktstabilisering i slutet av vägen som en framtida studie.

Abstract [en]

Advancements in technology is making machine intelligence possible with benefits in cost, safety and sustainability. Volvo CE has introduced an autonomous wheel loader concept, as they are moving towards more automation and machine intelligence in construction.

In contribution to this field of research, this thesis explores four different path following control algorithms - pure-pursuit, OLDPPA, Stanley and successive linearized model predictive control (MPC) - and compares them in terms of computational demands, path deviation, energy efficiency, and robustness against disturbances.

A dynamic bicycle model was developed and validated against a scaled prototype wheel loader. Parameters from the physical prototype used in the vehicle model were measured though empirical experiments. Next, the control algorithms were tested on the vehicle model using multiple random paths generated by a RRT* algorithm.

Results show that the MPC is more computationally heavy, but has benefits in performance and robustness against disturbances. The OLDPPA produced larger path deviation than the fixed look-ahead distance pure-pursuit algorithm, contradicting what previous studies have shown. The pure-pursuit algorithm showed performance comparable to the MPC but was more susceptible to disturbance, while the Stanley controller showed the opposite results. Apart from path following, expanding the MPC architecture to allow for point stabilization at the end of the path is proposed as a futurestudy.

Place, publisher, year, edition, pages
2022. , p. 96
Series
TRITA-ITM-EX ; 2022:477
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-320731OAI: oai:DiVA.org:kth-320731DiVA, id: diva2:1707397
External cooperation
Prevas AB
Subject / course
Mechanical Engineering
Educational program
Degree of Master
Presentation
2022-06-21, 00:00 (English)
Supervisors
Examiners
Available from: 2022-10-31 Created: 2022-10-31 Last updated: 2022-10-31Bibliographically approved

Open Access in DiVA

fulltext(5110 kB)820 downloads
File information
File name FULLTEXT01.pdfFile size 5110 kBChecksum SHA-512
5dcbe92205c98c30ccfb21fdfd53188340fa1cfc2998c8cb919ad610ae17140a44948bd9cef7a53fe81e2490fa3fba114dfbd17efde4ec58d6e1b0a21b56b623
Type fulltextMimetype application/pdf

By organisation
Machine Design (Dept.)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 820 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 349 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf