kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparing soft body simulations using extended position-based dynamics and shape matching
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master of Fine Arts (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Today, soft body simulations are essential for a wide range of applications. They are for instance used for medical training in virtual reality and in video games to simulate clothes and hair. These kinds of interactive applications rely on real-time simulations, which entails very strict requirements. The simulation has to be fast enough and must never break, regardless of what deformation might occur. Two methods that perform well with regard to these requirements are the position-based dynamics (PBD) method and the shape matching method. Even though these methods have been used for years, it is still unclear when you should use either method. This thesis has compared the two methods with regard to the mentioned requirements. More specifically, the thesis has evaluated the performance of the simulation loop as well as the simulated objects’ ability to restore their shape after deformation. The performance results clearly show that the PBD method is the fastest. But the results of the simulated objects’ ability to restore their shape were not as conclusive. Overall, the PBD method seemed to perform the best again, but there were cases the method could not handle. Although the shape matching method performed slightly worse, it did manage to restore the shape of every deformed object. In conclusion, for most applications, the PBD method is likely the better option, but if the application relies on the fact that simulated objects can restore their shape, then the shape matching method may be preferable.

Abstract [sv]

Idag är simulering av mjuka kroppar viktiga för en mängd olika tillämpningar. De används exempelvis för medicinsk träning i virtuell verklighet och i datorspel för att simulera kläder och hår. Dessa typer av interaktiva applikationer förlitar sig på realtidssimuleringar, vilket medför många stränga krav. Simuleringen måste vara tillräckligt snabb och får aldrig gå sönder, oavsett vad för slags deformation som kan uppstå. Två metoder som presterar bra med avseende på dessa krav är position-based dynamics (PBD) och shape matching. Trots att dessa metoder har använts i många år, så är det fortfarande oklart när vilken metod är mest lämplig. Denna avhandling har jämfört de två metoderna med hänsyn till de nämnda kraven. Mer specifikt har avhandlingen utvärderat metodernas prestanda samt de simulerade objektens förmåga att återställa sin form efter deformation. Resultaten för prestanda visar tydligt att PBD-metoden är snabbast. Men resultaten av de simulerade objektens förmåga att återställa sin form var inte lika enhälliga. Sammantaget verkade PBD-metoden prestera bäst igen, däremot fanns det fall som metoden inte kunde hantera. Fastän shape matching metoden presterade något sämre, så lyckades den återställa formen för varje deformerat objekt. Sammanfattningsvis, för de flesta applikationer är PBD-metoden troligen det bättre alternativet, men om applikationen förlitar sig på att de simulerade objekten kan återställa sina former, så kan shape matching metoden vara att föredra.

Place, publisher, year, edition, pages
2022. , p. 69
Series
TRITA-EECS-EX ; 2022:619
Keywords [en]
Soft body simulation, Position-based dynamics, Shape matching, Real-time simulation
Keywords [sv]
Mjuk kropp simulering, Position-based dynamics, Shape matching, Realtidssimulering
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-320940OAI: oai:DiVA.org:kth-320940DiVA, id: diva2:1708156
External cooperation
Avalanche Studios Group
Subject / course
Computer Science
Educational program
Master of Science - Computer Science
Supervisors
Examiners
Available from: 2022-11-03 Created: 2022-11-02 Last updated: 2022-11-03Bibliographically approved

Open Access in DiVA

fulltext(22524 kB)1138 downloads
File information
File name FULLTEXT01.pdfFile size 22524 kBChecksum SHA-512
5ca91d36f2f4abdcaea9f1e77c23fa8f3fc9a2e06585a5be39494093095dd1ccdea598b7286881943e3a97e4f7ab848beba35aa8049b4a06e0ec0f0da47a8a9d
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1138 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 744 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf