kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Real-time object detection robotcontrol: Investigating the use of real time object detection on a Raspberry Pi for robot control
KTH, School of Industrial Engineering and Management (ITM).
KTH, School of Industrial Engineering and Management (ITM).
2022 (English)Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesisAlternative title
Autonom robot styrning via realtids bildigenkänning : Undersökning av användningen av realtids bildigenkänning på en Raspberry Pi för robotstyrning (Swedish)
Abstract [en]

The field of autonomous robots have been explored more and more over the last decade. The combination of machine learning advances and increases in computational power have created possibilities to explore the usage of machine learning models on edge devices. The usage of object detection on edge devices is bottlenecked by the edge devices' limited computational power and they therefore have constraints when compared to the usage of machine learning models on other devices. This project explored the possibility to use real time object detection on a Raspberry Pi as input in different control systems. The Raspberry with the help of a coral USB accelerator was able to find a specified object and drive to it, and it did so successfully with all the control systems tested. As the robot was able to navigate to the specified object with all control systems, the possibility of using real time object detection in faster paced situations can be explored.

Abstract [sv]

Ämnet autonoma robotar har blivit mer och mer undersökt under de senaste årtiondet. Kombinationen av maskin inlärnings förbättringar och ökade beräknings möjligheter hos datorer och chip har gjort det möjligt att undersöka användningen av maskin inlärningsmodeller på edge enheter. Användandet av bildigenkänning på edge enheter är begränsad av edge enheten begränsade datorkraft, och har därför mer begränsningar i jämförelse med om man använder bildigenkänning på en annan typ av enhet. Det här projektet har undersökt möjligheten att använda bildigenkänning i realtid som input för kontrollsystem på en Raspberry Pi. Raspberry Pien med hjälp av en Coral USB accelerator lyckades att lokalisera och köra till ett specificerat objekt, Raspberryn gjorde detta med alla kontrollsystem som testades på den. Eftersom roboten lyckades med detta, så öppnas möjligheten att använda bildigenkänning på edge enheter i snabbare situationer.

Place, publisher, year, edition, pages
2022. , p. 41
Series
TRITA-ITM-EX ; 2022:104
Keywords [en]
Edge Device Raspberry Pi Image recognition Machine learning Tracked robot Track drive
Keywords [sv]
Edge device Raspberry Pi Maskin inlärning Bandvagns robot Band drivlina Bildigenkänning
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-320969OAI: oai:DiVA.org:kth-320969DiVA, id: diva2:1708300
Presentation
2022-05-09, 00:00 (English)
Supervisors
Examiners
Available from: 2022-11-03 Created: 2022-11-03 Last updated: 2022-11-03Bibliographically approved

Open Access in DiVA

fulltext(6466 kB)1668 downloads
File information
File name FULLTEXT01.pdfFile size 6466 kBChecksum SHA-512
7bb7aad8edb0e2070d666976947f3be1e7e754a7530251fa45649d10b0d4890bafff602b641130b3ae15ce95d5d73bffde00b4ec0fb30f203eb612c6e0c03b91
Type fulltextMimetype application/pdf

By organisation
School of Industrial Engineering and Management (ITM)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1668 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 416 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf