Open this publication in new window or tab >>
2022 (English) Doctoral thesis, comprehensive summary (Other academic)
Abstract [en] Silicon photonics, or the confinement and control of light in integrated silicon waveguides, has rapidly grown from research labs to high-end chips for telecommunications. With the associated improvements in waveguide performance, the technology is promising for a wide range of new applications, from computing to sensing. However, current chip implementations of such applications are limited in scale. The available actuators used to control the circuits do not have the performance needed as building blocks for large circuits requiring thousands of actuators.
Today’s silicon photonic circuits rely mainly on heaters and the thermo-optic effect for actuation. It enables the monolithic integration of reconfigurable building blocks in silicon photonic foundries with low optical losses and relatively short optical lengths. However, such heater-based building blocks consume over 1mW per device. Opto-electronic actuators are also available in silicon photonic foundries for high-speed modulation but are lossy and long.
Micromechanical actuators for silicon photonics could provide the missing technology for scaling photonic circuits. Silicon is a material with excellent mechanical properties, and MEMS actuators can therefore be designed on the same layers used for waveguides. Electrostatic MEMS actuators consume very low power (<1nW static leakage per device), can achieve optical losses on par with state-of-the-art thermo-optic devices, within shorter optical lengths, and have response times in the μs range. However, such actuators require the partial suspension of silicon structures for movement, which is not currently available in silicon photonic foundries and presents additional challenges for commercial packaging.
This thesis aims to bring large-scale photonic circuits closer to reality by integrating low-power and scalable silicon photonic MEMSactuators in a silicon photonics foundry platform. MEMS-based building blocks with scalable optical performance were developed and included in photonic circuits. The devices and circuits were implemented on a silicon photonics foundry platform (IMEC’s iSiPP50G)with a few foundry-compatible post-processing steps. Finally, a solution for wafer-level sealing of the MEMS actuators was developed, compatible with subsequent packaging and enhancing the mechanical performance of the devices.
Abstract [sv] Kiselfotonik, eller ingränsningen och kontrollerandet av ljus i integrerade optiska vågledare av kisel, has vuxit fram snabbt från labbmiljö till högpresterande chip för telekommunikation. Med den samtida förbättringen i vågledarprestanda är den här teknologin lovande för ett brett spektra av nya applikationer, från specialiserad datorberäkning till sensorer. Nuvarande implementeringar av den här tekniken i chip är dock begränsad i skala. De tillgängliga byggstenarna som användas för att kontrollera kretsarna är inte rillräckligt bra för att användas upprepade gånger i stora kretsar.
Dagens aktiva byggstenar i kiselfotonik är beroende av uppvärmning och den termo-optiska effekten för aktuering. Den möjliggör monolitisk integrering av byggstenar i kiselfotoniska platformar, med låga optiska förluster och relativt korta optiska längder. Sådana värmebaserade byggstenar förbrukar dock mer än 1mW per device. Opto-elektroniska aktuatorer är också tillgängliga för höghastighetsmodulering i kiselfotoniska platformar men lider av höga förluster och är långa.
Mikromekaniska aktuatorer för kiselfotonik kan bidra med den teknik som saknas för uppskalning av fotoniska kretsar. Kisel är ett material med utmärkta mekaniska egenskaper, och MEMS-aktuatorer kan därför designas på samma lager som används för vågledarna. Elektrostatiska MEMS-aktuatorer förbrukar väldigt lite energi (1nW statiskt läckage per device), kan uppnå optiska förluster på samma nivå som dagens termo-optiska devicer, på kortare längder, och har svarstider på mikrosekund-nivå. Dessa aktuatorer kräver dock partiell suspension av kiselstrukturer för att uppnå rörelse, vilket inte är en tillgänglig teknik i kiselfotoniska platformar, och representerar ytterligare utmaningar vad gäller paketering av devicer.
Forskningen som presenteras i denna avhandling avser att föra storskaliga kiselfotoniska närmare kretsar verhligheten genom integration av MEMS-aktuatorer. MEMS-baserade byggstenar med skalbar optisk prestande utvecklades och inkluderades i fotoniska kretsar. Alla devicer och kretsar implementerades i en kiselfotonisk plattform (IMEC’s iSiPP50G) med några platformskompatibla efterbehandlingssteg. Slutligen utvecklades en lösning för försegling på wafer-nivå av dessa MEMS-aktuatorer, som är kompatibel med efterföljande paketering och som förbättrar den mekaniska prestandan hos dessa devicer.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 108
Series
TRITA-EECS-AVL ; 2022:71
Keywords Photonics, silicon photonics, MEMS, photonic MEMS, 3D printing, liquid crystals, programmable photonics, phase shifters, optical switches, ring resonators
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers urn:nbn:se:kth:diva-321054 (URN) 978-91-8040-403-7 (ISBN)
Public defence
2022-11-25, F3, Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder EU, Horizon 2020, 66821
Note QC 20221104
2022-11-042022-11-042022-11-09 Bibliographically approved