kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Continuous Stabilization and Carbonization of a Lignin–Cellulose Precursor to Carbon Fiber
Division Bioeconomy and Health, RISE Research Institutes of Sweden, P.O. Box 5604, SE-114 86 Stockholm, Sweden.ORCID iD: 0000-0003-3346-5501
Division Material and Production, RISE Research Institutes of Sweden, P.O. Box 104, SE-431 22 Mölndal, Sweden.ORCID iD: 0000-0002-2513-4289
Division Material and Production, RISE Research Institutes of Sweden, P.O. Box 104, SE-431 22 Mölndal, Sweden.
Fibrobotics OY, Korkeakoulunkatu 1, FI-33720 Tampere, Finland.
Show others and affiliations
2022 (English)In: ACS Omega, E-ISSN 2470-1343, Vol. 7, no 19, p. 16793-16802Article in journal (Refereed) Published
Abstract [en]

: The demand for carbon fibers (CFs) based onrenewable raw materials as the reinforcing fiber in composites forlightweight applications is growing. Lignin−cellulose precursorfibers (PFs) are a promising alternative, but so far, there is limitedknowledge of how to continuously convert these PFs underindustrial-like conditions into CFs. Continuous conversion is vitalfor the industrial production of CFs. In this work, we havecompared the continuous conversion of lignin−cellulose PFs (50wt % softwood kraft lignin and 50 wt % dissolving-grade kraft pulp)with batchwise conversion. The PFs were successfully stabilizedand carbonized continuously over a total time of 1.0−1.5 h,comparable to the industrial production of CFs from polyacrylonitrile. CFs derived continuously at 1000 °C with a relative stretch of−10% (fiber contraction) had a conversion yield of 29 wt %, a diameter of 12−15 μm, a Young’s modulus of 46−51 GPa, and atensile strength of 710−920 MPa. In comparison, CFs obtained at 1000 °C via batchwise conversion (12−15 μm diameter) with arelative stretch of 0% and a conversion time of 7 h (due to the low heating and cooling rates) had a higher conversion yield of 34 wt%, a higher Young’s modulus (63−67 GPa) but a similar tensile strength (800−920 MPa). This suggests that the Young’s moduluscan be improved by the optimization of the fiber tension, residence time, and temperature profile during continuous conversion,while a higher tensile strength can be achieved by reducing the fiber diameter as it minimizes the risk of critical defects.

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2022. Vol. 7, no 19, p. 16793-16802
National Category
Paper, Pulp and Fiber Technology Composite Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321057DOI: 10.1021/acsomega.2c01806ISI: 000804540400054PubMedID: 35601329Scopus ID: 2-s2.0-85130062725OAI: oai:DiVA.org:kth-321057DiVA, id: diva2:1708581
Note

QC 20230612

Available from: 2022-11-04 Created: 2022-11-04 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Biobased carbon fibers from solution spun lignocellulosic precursors
Open this publication in new window or tab >>Biobased carbon fibers from solution spun lignocellulosic precursors
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Carbon fibers (CFs) have excellent mechanical properties and a low density, making themattractive as a reinforcing fiber in composites. The use of CFs is limited to high-end applications,since they are produced from an expensive fossil-based precursor via an energy-intensivemanufacturing process, explaining the need for cheaper CFs from renewables. CFs can be madefrom strong cellulosic precursors, but the low carbon content of cellulose results in a lowconversion yield, and thus an expensive CF. Lignin has a higher carbon content than cellulose butCFs from melt spun lignin precursors have presented challenges, since these precursors have a lowstrength and are difficult to convert to CF in a realistic conversion time.In the present work, CFs from solution spun precursors consisting of blends of softwood kraftlignin and cellulose have been developed. The lignin-cellulose precursors (up to 70% lignin) wereprepared with air-gap spinning and wet spinning, using an ionic liquid and a water-based solventsystem for co-dissolution, respectively. Co-processing of cellulose and lignin was beneficial as theformer made the precursor strong and easy to handle, whereas the latter gave a higher conversionyield than precursors based solely on cellulose. The precursors were converted to CFs via bothbatchwise and continuous conversion, using industrially relevant times (< 2 h), with a yield up to45 wt% after incorporation of a flame retardant.These CFs have a moderate Young’s modulus and tensile strength up to 75–77 GPa and 1.2 GPa,respectively, i.e. similar to the values for CFs from fossil-based isotropic pitch and they can thusbe classified as general-grade CFs. These biobased CFs have a disordered turbostratic graphitestructure, and their tensile properties are affected by the precursor structure, the conversionconditions, and the final diameter. These CFs can potentially be used as a sustainable componentin non-structural and semi-structural applications.

Abstract [sv]

Kolfibrer har utmärkta mekaniska egenskaper och en låg densitet, vilket gör dem attraktiva somstyrkebärande komponent i kompositer. Kolfibrer används främst i applikationer där god prestandaöverväger dess höga kostnad, vilken grundar sig i användandet av en dyr fossilbaserad startfibersom konverteras till kolfiber i en energikrävande process, vilket förklarar behovet av billigarekolfibrer från förnyelsebara råvaror. Kolfibrer kan tillverkas från starka cellulosabaseradestartfibrer, men cellulosans låga kolinnehåll resulterar i ett lågt utbyte, vilket leder till en dyrkolfiber. Lignin har ett högre kolinnehåll och har smältspunnits, men den låga styrkan hosstartfibern samt den långa konverteringstiden är utmanande.I detta arbete har kolfibrer utvecklats från lösningsmedelsspunna startfibrer innehållandeblandningar av barrvedslignin och cellulosa. Startfibrerna, innehållande upp till 70% lignin, harspunnits med luftgapsspinning samt våtspinning, där en jonvätska respektive ett vattenbaseratlösningsmedelssystem använts. Att samprocessa cellulosa och lignin var fördelaktigt eftersom denförstnämnda gjorde startfibrerna starka och lätthanterliga medan den sistnämnda ökadekonverteringsutbytet jämfört med cellulosabaserade startfibrer. Kolfibrer framställdes både satsvisoch kontinuerligt under industriellt relevanta tider (<2 timmar), med ett konverteringsutbyte upptill 45% efter tillsats av ett flamskyddsmedel.Dessa kolfibrer har en relativt låg elasticitetsmodul om 75–77 GPa och dragstyrka om 1.2 GPa,vilket är i paritet med kolfibrer från fossilbaserad isotrop stenkolstjära, vilket gör att de kanklassificeras som kolfibrer av intermediär kvalitet. Kolfibrerna har en oordnad turbostratiskgrafitstruktur, och de mekaniska egenskaperna påverkas av konverteringsbetingelserna,startfiberns struktur samt slutdiametern. Dessa kolfibrer kan potentiellt användas som en hållbarkomponent i icke- samt partiellt-styrkebärande applikationer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 66
Series
TRITA-CBH-FOU ; 2022:57
Keywords
Carbon fiber, Carbonization, Cellulose, Kraft pulp, Softwood kraft lignin, Solution spinning, Stabilization, Barrvedslignin, Cellulosa, Karbonisering, Kolfiber, Lösningsmedelsspinning, Stabilisering, Sulfatmassa
National Category
Paper, Pulp and Fiber Technology Composite Science and Engineering Materials Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-321059 (URN)978-91-8040-407-5 (ISBN)
Public defence
2022-12-02, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2022-11-07

Available from: 2022-11-07 Created: 2022-11-04 Last updated: 2022-11-07Bibliographically approved

Open Access in DiVA

fulltext(4516 kB)393 downloads
File information
File name FULLTEXT01.pdfFile size 4516 kBChecksum SHA-512
2d86caa407f411e4c7315d7efee68d7ced1e28417a8ed2f5a0c0eab7bf900f593038ec6cef0a09ee946ab8d101ade17c4cb54c37a42f7c1c9ed865ed125c891a
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Bengtsson, AndreasBrännvall, Elisabet

Search in DiVA

By author/editor
Bengtsson, AndreasBengtsson, JennyBrännvall, ElisabetSedin, Maria
In the same journal
ACS Omega
Paper, Pulp and Fiber TechnologyComposite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 395 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 831 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf