kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biobased carbon fibers from solution spun lignocellulosic precursors
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. RISE Research Institutes of Sweden AB. (Monica Ek)ORCID iD: 0000-0003-3346-5501
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Carbon fibers (CFs) have excellent mechanical properties and a low density, making themattractive as a reinforcing fiber in composites. The use of CFs is limited to high-end applications,since they are produced from an expensive fossil-based precursor via an energy-intensivemanufacturing process, explaining the need for cheaper CFs from renewables. CFs can be madefrom strong cellulosic precursors, but the low carbon content of cellulose results in a lowconversion yield, and thus an expensive CF. Lignin has a higher carbon content than cellulose butCFs from melt spun lignin precursors have presented challenges, since these precursors have a lowstrength and are difficult to convert to CF in a realistic conversion time.In the present work, CFs from solution spun precursors consisting of blends of softwood kraftlignin and cellulose have been developed. The lignin-cellulose precursors (up to 70% lignin) wereprepared with air-gap spinning and wet spinning, using an ionic liquid and a water-based solventsystem for co-dissolution, respectively. Co-processing of cellulose and lignin was beneficial as theformer made the precursor strong and easy to handle, whereas the latter gave a higher conversionyield than precursors based solely on cellulose. The precursors were converted to CFs via bothbatchwise and continuous conversion, using industrially relevant times (< 2 h), with a yield up to45 wt% after incorporation of a flame retardant.These CFs have a moderate Young’s modulus and tensile strength up to 75–77 GPa and 1.2 GPa,respectively, i.e. similar to the values for CFs from fossil-based isotropic pitch and they can thusbe classified as general-grade CFs. These biobased CFs have a disordered turbostratic graphitestructure, and their tensile properties are affected by the precursor structure, the conversionconditions, and the final diameter. These CFs can potentially be used as a sustainable componentin non-structural and semi-structural applications.

Abstract [sv]

Kolfibrer har utmärkta mekaniska egenskaper och en låg densitet, vilket gör dem attraktiva somstyrkebärande komponent i kompositer. Kolfibrer används främst i applikationer där god prestandaöverväger dess höga kostnad, vilken grundar sig i användandet av en dyr fossilbaserad startfibersom konverteras till kolfiber i en energikrävande process, vilket förklarar behovet av billigarekolfibrer från förnyelsebara råvaror. Kolfibrer kan tillverkas från starka cellulosabaseradestartfibrer, men cellulosans låga kolinnehåll resulterar i ett lågt utbyte, vilket leder till en dyrkolfiber. Lignin har ett högre kolinnehåll och har smältspunnits, men den låga styrkan hosstartfibern samt den långa konverteringstiden är utmanande.I detta arbete har kolfibrer utvecklats från lösningsmedelsspunna startfibrer innehållandeblandningar av barrvedslignin och cellulosa. Startfibrerna, innehållande upp till 70% lignin, harspunnits med luftgapsspinning samt våtspinning, där en jonvätska respektive ett vattenbaseratlösningsmedelssystem använts. Att samprocessa cellulosa och lignin var fördelaktigt eftersom denförstnämnda gjorde startfibrerna starka och lätthanterliga medan den sistnämnda ökadekonverteringsutbytet jämfört med cellulosabaserade startfibrer. Kolfibrer framställdes både satsvisoch kontinuerligt under industriellt relevanta tider (<2 timmar), med ett konverteringsutbyte upptill 45% efter tillsats av ett flamskyddsmedel.Dessa kolfibrer har en relativt låg elasticitetsmodul om 75–77 GPa och dragstyrka om 1.2 GPa,vilket är i paritet med kolfibrer från fossilbaserad isotrop stenkolstjära, vilket gör att de kanklassificeras som kolfibrer av intermediär kvalitet. Kolfibrerna har en oordnad turbostratiskgrafitstruktur, och de mekaniska egenskaperna påverkas av konverteringsbetingelserna,startfiberns struktur samt slutdiametern. Dessa kolfibrer kan potentiellt användas som en hållbarkomponent i icke- samt partiellt-styrkebärande applikationer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 66
Series
TRITA-CBH-FOU ; 2022:57
Keywords [en]
Carbon fiber, Carbonization, Cellulose, Kraft pulp, Softwood kraft lignin, Solution spinning, Stabilization
Keywords [sv]
Barrvedslignin, Cellulosa, Karbonisering, Kolfiber, Lösningsmedelsspinning, Stabilisering, Sulfatmassa
National Category
Paper, Pulp and Fiber Technology Composite Science and Engineering Materials Chemistry
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-321059ISBN: 978-91-8040-407-5 (print)OAI: oai:DiVA.org:kth-321059DiVA, id: diva2:1708591
Public defence
2022-12-02, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2022-11-07

Available from: 2022-11-07 Created: 2022-11-04 Last updated: 2022-11-07Bibliographically approved
List of papers
1. Improved yield of carbon fibres from cellulose and kraft lignin
Open this publication in new window or tab >>Improved yield of carbon fibres from cellulose and kraft lignin
Show others...
2018 (English)In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 72, no 12, p. 1007-1016Article in journal (Refereed) Published
Abstract [en]

To meet the demand for carbon-fibre-reinforced composites in lightweight applications, cost-efficient processing and new raw materials are sought for. Cellulose and kraft lignin are each interesting renewables for this purpose due to their high availability. The molecular order of cellulose is an excellent property, as is the high carbon content of lignin. By co-processing cellulose and lignin, the advantages of these macromolecules are synergistic for producing carbon fibre (CF) of commercial grade in high yields. CFs were prepared from precursor fibres (PFs) made from 70: 30 blends of softwood kraft lignin (SW-KL) and cellulose by dry-jet wet spinning with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) as a solvent. In focus was the impact of the molecular mass of lignin and the type of cellulose source on the CF yield and properties, while membrane-filtrated kraft lignin and cellulose from dissolving kraft pulp and fully bleached paper-grade SW-KP (kraft pulp) served as sources. Under the investigated conditions, the yield increased from around 22% for CF from neat cellulose to about 40% in the presence of lignin, irrespective of the type of SW-KL. The yield increment was also higher relative to the theoretical one for CF made from blends (69%) compared to those made from neat celluloses (48-51%). No difference in the mechanical properties of the produced CF was observed.

Place, publisher, year, edition, pages
WALTER DE GRUYTER GMBH, 2018
Keywords
1-ethyl-3-methylimidazolium acetate (EMIMAc), carbon fibre (CF), cellulose, dissolving pulp, dry-jet wet-spun, fractionation, kraft pulp, LignoBoost lignin, molecular mass, softwood kraft lignin
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-239978 (URN)10.1515/hf-2018-0028 (DOI)000451440900001 ()2-s2.0-85050958001 (Scopus ID)
Note

QC 20181211

Available from: 2018-12-11 Created: 2018-12-11 Last updated: 2024-03-15Bibliographically approved
2. Carbon Fibers from Lignin-Cellulose Precursors: Effect of Stabilization Conditions
Open this publication in new window or tab >>Carbon Fibers from Lignin-Cellulose Precursors: Effect of Stabilization Conditions
2019 (English)In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 7, no 9, p. 8440-8448Article in journal (Refereed) Published
Abstract [en]

There is an increasing demand for lightweight composites reinforced with carbon fibers (CFs). Due to its high availability and carbon content, kraft lignin has gained attention as a potential low-cost CF precursor. CFs with promising properties can be made from flexible dry-jet wet spun precursor fibers (PFs) from blends (70:30) of softwood kraft lignin and fully bleached softwood kraft pulp. This study focused on reducing the stabilization time, which is critical in CF manufacturing. The impact of stabilization conditions on chemical structure, yield, and mechanical properties was investigated. It was possible to reduce the oxidative stabilization time of the PFs from about 16 h to less than 2 h, or even omitting the stabilization step, without fusion of fibers. The main reactions involved in the stabilization stage were dehydration and oxidation. The results suggest that the isothermal stabilization at 250 degrees C override the importance of having a slow heating rate. For CFs with a commercial diameter, stabilization of less than 2 h rendered in tensile modulus 76 GPa and tensile strength 1070 MPa. Impregnation with ammonium dihydrogen phosphate significantly increased the CF yield, from 31-38 to 46-50 wt %, but at the expense of the mechanical properties.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
Keywords
Carbon fiber, Softwood kraft lignin, Fully bleached softwood kraft pulp, Stabilization, Ammonium dihydrogen phosphate, Dry jet wet spinning
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-252615 (URN)10.1021/acssuschemeng.9b00108 (DOI)000467351200048 ()2-s2.0-85065403539 (Scopus ID)
Note

QC 20190603

Available from: 2019-06-03 Created: 2019-06-03 Last updated: 2024-03-15Bibliographically approved
3. Carbon Fibers from Lignin-Cellulose Precursors: Effect of Carbonization Conditions
Open this publication in new window or tab >>Carbon Fibers from Lignin-Cellulose Precursors: Effect of Carbonization Conditions
Show others...
2020 (English)In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 8, no 17, p. 6826-6833Article in journal (Refereed) Published
Abstract [en]

Carbon fibers (CFs) are gaining increasing importance in lightweight composites, but their high price and reliance on fossil-based raw materials stress the need for renewable and cost-efficient alternatives. Kraft lignin and cellulose are renewable macromolecules available in high quantities, making them interesting candidates for CF production. Dry-jet wet spun precursor fibers (PFs) from a 70/30 w/w blend of softwood kraft lignin (SKL) and fully bleached softwood kraft pulp (KP) were converted into CFs under fixation. The focus was to investigate the effect of carbonization temperature and time on the CF structure and properties. Reducing the carbonization time from 708 to 24 min had no significant impact on the tensile properties. Increasing the carbonization temperature from 600 to 800 °C resulted in a large increase in the carbon content and tensile properties, suggesting that this is a critical region during carbonization of SKL:KP PFs. The highest Young's modulus (77 GPa) was obtained after carbonization at 1600 °C, explained by the gradual transition from amorphous to nanocrystalline graphite observed by Raman spectroscopy. On the other hand, the highest tensile strength (1050 MPa) was achieved at 1000 °C, a decrease being observed thereafter, which may be explained by an increase in radial heterogeneity.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2020
Keywords
carbon fiber, carbonization, cellulose, dry-jet wet spinning, fully bleached softwood kraft pulp, softwood kraft lignin
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-276403 (URN)10.1021/acssuschemeng.0c01734 (DOI)000530662400027 ()2-s2.0-85084748026 (Scopus ID)
Note

QC 20200611

Available from: 2020-06-11 Created: 2020-06-11 Last updated: 2022-11-07Bibliographically approved
4. Continuous Stabilization and Carbonization of a Lignin–Cellulose Precursor to Carbon Fiber
Open this publication in new window or tab >>Continuous Stabilization and Carbonization of a Lignin–Cellulose Precursor to Carbon Fiber
Show others...
2022 (English)In: ACS Omega, E-ISSN 2470-1343, Vol. 7, no 19, p. 16793-16802Article in journal (Refereed) Published
Abstract [en]

: The demand for carbon fibers (CFs) based onrenewable raw materials as the reinforcing fiber in composites forlightweight applications is growing. Lignin−cellulose precursorfibers (PFs) are a promising alternative, but so far, there is limitedknowledge of how to continuously convert these PFs underindustrial-like conditions into CFs. Continuous conversion is vitalfor the industrial production of CFs. In this work, we havecompared the continuous conversion of lignin−cellulose PFs (50wt % softwood kraft lignin and 50 wt % dissolving-grade kraft pulp)with batchwise conversion. The PFs were successfully stabilizedand carbonized continuously over a total time of 1.0−1.5 h,comparable to the industrial production of CFs from polyacrylonitrile. CFs derived continuously at 1000 °C with a relative stretch of−10% (fiber contraction) had a conversion yield of 29 wt %, a diameter of 12−15 μm, a Young’s modulus of 46−51 GPa, and atensile strength of 710−920 MPa. In comparison, CFs obtained at 1000 °C via batchwise conversion (12−15 μm diameter) with arelative stretch of 0% and a conversion time of 7 h (due to the low heating and cooling rates) had a higher conversion yield of 34 wt%, a higher Young’s modulus (63−67 GPa) but a similar tensile strength (800−920 MPa). This suggests that the Young’s moduluscan be improved by the optimization of the fiber tension, residence time, and temperature profile during continuous conversion,while a higher tensile strength can be achieved by reducing the fiber diameter as it minimizes the risk of critical defects.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2022
National Category
Paper, Pulp and Fiber Technology Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-321057 (URN)10.1021/acsomega.2c01806 (DOI)000804540400054 ()35601329 (PubMedID)2-s2.0-85130062725 (Scopus ID)
Note

QC 20230612

Available from: 2022-11-04 Created: 2022-11-04 Last updated: 2024-03-15Bibliographically approved
5. Carbon fibres from wet spun cellulose-ligninprecursors using the cold alkali process
Open this publication in new window or tab >>Carbon fibres from wet spun cellulose-ligninprecursors using the cold alkali process
(English)Manuscript (preprint) (Other academic)
National Category
Paper, Pulp and Fiber Technology Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-321058 (URN)
Note

QC 20221107

Available from: 2022-11-04 Created: 2022-11-04 Last updated: 2023-11-30Bibliographically approved

Open Access in DiVA

Thesis(3968 kB)484 downloads
File information
File name FULLTEXT01.pdfFile size 3968 kBChecksum SHA-512
8d70ea2feb47942286d75da1ee39c25eedd0b995819e76d7402484c2242decfbd49b156809460d9f9abb03f6bf81155de567d013c54539080f04901e36807a70
Type fulltextMimetype application/pdf

Authority records

Bengtsson, Andreas

Search in DiVA

By author/editor
Bengtsson, Andreas
By organisation
Fibre- and Polymer Technology
Paper, Pulp and Fiber TechnologyComposite Science and EngineeringMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 498 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1831 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf