kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Frequency Dynamics of the Northern European AC/DC Power System: A Look-Ahead Study
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
Tech Univ Denmark, Dept Elect Engn, DK-2800 Lyngby, Denmark..
Tech Univ Denmark, Dept Elect Engn, DK-2800 Lyngby, Denmark..
Tech Univ Denmark, Dept Elect Engn, DK-2800 Lyngby, Denmark..
Show others and affiliations
2022 (English)In: IEEE Transactions on Power Systems, ISSN 0885-8950, E-ISSN 1558-0679, Vol. 37, no 6, p. 4661-4672Article in journal (Refereed) Published
Abstract [en]

In many power systems, the increased penetration of inverter-based renewable generation will cause a decrease in kinetic energy storage, leading to higher frequency excursions after a power disturbance. This is the case of the future Nordic Power System (NPS). The look-ahead study reported in this paper shows that the chosen units participating in Frequency Containment Reserves (FCR) cannot keep the frequency above the prescribed threshold following the outage of the largest plant. This analysis relies on a detailed model of the Northern European grid. The latter is compared to the classical single-mass equivalent, and the impact of voltage-dependent loads is assessed in some detail. Next, the paper focuses on emergency power control of the HVDC links that connect the NPS to the rest of the European grid, which can supplement or even replace part of the FCR. The proper tuning of that control is discussed. Finally, the analysis is extended to the HVDC links connecting the future North Sea Wind Power Hub under two configurations, namely low and zero inertia. The impact of outages in the latter sub-system is also assessed. The material to simulate the system with industrial software is made publicly available.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022. Vol. 37, no 6, p. 4661-4672
Keywords [en]
HVDC transmission, Load modeling, Europe, Voltage control, Power systems, Kinetic energy, Power system stability, Frequency containment reserves, hvdc frequency support, nordic power system, north sea wind power hub
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321030DOI: 10.1109/TPWRS.2022.3154720ISI: 000871076600045Scopus ID: 2-s2.0-85125298720OAI: oai:DiVA.org:kth-321030DiVA, id: diva2:1708610
Note

QC 20221104

Available from: 2022-11-04 Created: 2022-11-04 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Coordinated Frequency Control Using DC Interconnections Between AC Systems: Utilizing Fast Frequency Support through HVDC Links and Evaluating the Newly Uncovered Dynamics in Low-Inertia Power Systems
Open this publication in new window or tab >>Coordinated Frequency Control Using DC Interconnections Between AC Systems: Utilizing Fast Frequency Support through HVDC Links and Evaluating the Newly Uncovered Dynamics in Low-Inertia Power Systems
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transmission system operators are increasingly adopting renewable energy sources in response to the escalating need to reduce environmental pollution. However, renewable energy sources, like wind and solar power, connect to the grid through power electronics, offering no inherent inertia. This reduction in inertia substantially deteriorates the frequency responses during large power disturbances. Frequency Containment Reserves (FCR) are designed to counteract these disturbances and stabilize frequency within a few seconds after an imbalance has occurred. However, in scenarios with low inertia and large power disturbances, relying solely on FCR may prove insufficient to maintain frequency within acceptable limits, risking power system blackouts and severe disruptions. This thesis, therefore, conducts a comprehensive evaluation of fast frequency support in the form of Emergency Power Control (EPC) from High Voltage Direct Current (HVDC) links as a complement to FCR.

Unlike prior research, which overlooked the consideration of technical requirements of FCR responses and their significance for EPC evaluation, this thesis fills these gaps. Additionally, previous literature examining EPC has not confirmed a reliable solution for a system of various HVDC links.

Various EPC designs are evaluated to reduce frequency deviations and avoid negative interactions. This thesis employs dynamic simulations and, where appropriate, various linear control theories. A spectrum of system models is used, from simplified single-machine equivalents to detailed multi-machine models, aiming to highlight common findings, explain disparities, and capture relevant stability interactions. Particular attention is given to voltage-dependent dynamics, which are often overlooked in frequency control assessments. Moreover, considering EPC's ability to apply large gains, the thesis explores its impact on small-signal stability.

The droop frequency-based EPC using local inputs emerges as a key and safe solution for controlling the frequency in the Nordic power system for present and future operations. It is shown that the proposed EPC reduces the frequency deviations when appropriate droop values are chosen. Even more, the research demonstrates stability and cost benefits when efficiently distributing EPC among different HVDC links and coordinating it with the FCR. The simple EPC design allowed for analyzing various dynamic interactions and derivations of strategies for avoiding the ones of a negative nature. Finally, the thesis confirms the overall positive and sustainable role of the proposed EPC.

Abstract [sv]

Systemoperatörer av överföringssystem hanterar en allt större andel förnybara energikällor som ett resultat av pågående energiomställning. Förnybara energikällor, så som vind- och solkraft, ansluts till elsystemet genom kraftelektronik vilket innebär att de inte bidrar med tröghet till elsystemet. Minskning av tröghet i elsystemet försämrar frekvenshållningen, speciellt då stora obalanser inträffar. Frekvenshållningsreserverna (FCRs – frequency containment reserves) är utformade för att stabilisera frekvensen inom några sekunder efter att en obalans inträffat. I scenarier med låg tröghet i elsystemet och då en stor obalans inträffar kan frekvenshållningsreserverna vara otillräckliga för att stabilisera och hålla frekvensen inom acceptabla gränser. Detta innebär en risk för ofrivillig automatisk förbrukningsbortkoppling samt risk för nätsammanbrott och därmed allvarliga störningar i elförsörjningen. Syftet med denna avhandling är att undersöka snabb frekvensreserv i form av nödeffekt (EPC) från högspänd likströmsförbindelser (HVDC – high voltage direct current) som ett komplement till frekvenshållningsreserverna.

Tidigare forskning har inte tagit hänsyn till tekniska krav på frekvenshållningsreserverna och deras betydelse för utvärderingen av nödeffekt vilket denna avhandling avser att behandla. Dessutom har tidigare litteratur som undersöker nödeffekt inte utvecklat en effektiv och tillförlitlig lösning för ett elsystem där olika HVDC-länkar ingår.

I denna avhandling utvärderas olika designer av nödeffekt med syftet att minska frekvensavvikelsen efter att en stor obalans har inträffat samt syftet att undvika negativa stabilitetsinteraktioner. Dynamiska simuleringar genomförs och olika linjära reglertekniska metoder/teorier används i analyserna. Ett flertal olika elsystemmodeller används, från en enkel en-maskinekvivalenten till mer detaljerade fler-maskinmodeller. Syftet med att använda olika modeller är att kunna förklara och verifiera resultat från teoretiska beräkningar samt att fånga relevanta stabilitetsinteraktioner. Särskilt fokus är på spänningsberoende dynamik vilken ofta bortses vid utvärdering av frekvensresponsen. Avhandlingen undersöker även inverkan på småsignalstabilitet vid hög förstärkning i nödeffektregleringen. 

Nödeffekt som regleras proportionellt mot frekvensavvikelsen och som använder lokala mätningar utgör en säker och robust lösning för att förbättra frekvensresponsen i det nordiska kraftsystemet, både i nu och framöver. Avhandlingen visar dessutom stabilitets- och kostnadsfördelar vid noga avvägd distribuering av nödeffekt mellan olika HVDC-förbindelser och samordning med frekvenshållningsreserverna. Den enkla och robusta nödeffektdesignen gör det möjligt att analysera olika dynamiska interaktioner och varierande strategier för att undvika negativa stabilitetsinteraktioner. Slutligen visar avhandlingen den övergripande positiva påverkan och framtida rollen av föreslagen nödeffektdesign.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. xviii, 129
Series
TRITA-EECS-AVL ; 2024:25
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-344534 (URN)978-91-8040-861-5 (ISBN)
Public defence
2024-04-18, F3, Lindstedtsvägen 26 & 28, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20240320

Available from: 2024-03-20 Created: 2024-03-18 Last updated: 2024-03-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Obradovic, Danilo

Search in DiVA

By author/editor
Obradovic, Danilo
By organisation
Electric Power and Energy Systems
In the same journal
IEEE Transactions on Power Systems
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 93 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf