kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rock mass response for lined rock caverns subjected to high internal gas pressure
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0001-7643-7274
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0001-5372-7519
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0002-8152-6092
2023 (English)In: Journal of Rock Mechanics and Geotechnical Engineering, ISSN 1674-7755, Vol. 15, no 1, p. 119-129Article in journal (Refereed) Published
Abstract [en]

The storage of hydrogen gas in underground lined rock caverns (LRCs) enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel. Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur. Analytical and numerical models can be used to estimate the rock mass response to high internal pressure; however, the fitness of these models under different in situ stress conditions and cavern shapes has not been studied. In this paper, the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied. The analytical model is derived in detail and finite element (FE) models considering both two-dimensional (2D) and three-dimensional (3D) geometries are presented. These models are verified with field measurements from the LRC in Skallen, southwestern Sweden. The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights. For the case of anisotropic horizontal in situ stresses, as the conditions in Skallen, the 3D FE model is the best approach.

Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 15, no 1, p. 119-129
Keywords [en]
Lined rock caverns (LRCs); High pressure; Rock mass response; In situ stress condition; Cavern shape; Gas storage
National Category
Geotechnical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321064DOI: 10.1016/j.jrmge.2022.03.006ISI: 000950190300005Scopus ID: 2-s2.0-85129034434OAI: oai:DiVA.org:kth-321064DiVA, id: diva2:1708623
Funder
Swedish Energy Agency, 42684–2
Note

QC 20230118

Available from: 2022-11-04 Created: 2022-11-04 Last updated: 2023-09-21Bibliographically approved
In thesis
1. Modeling aspects of reliability-based design of lined rock caverns
Open this publication in new window or tab >>Modeling aspects of reliability-based design of lined rock caverns
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The storage of large quantities of hydrogen gas in underground lined rock caverns (LRCs) could contribute to an efficient supply of fossil-free energy. The consequences of failure of such storage can be catastrophic, so representative predictive models and a small probability of failure are needed for the LRC design. However, the available predictive models are simplified. On top of that, the calculation of a small probability of failure is challenging on its own, and becomes more difficult when combined with representative numerical models, which are often computationally demanding.

The purpose of this thesis is to develop a reliability-based design tool for LRC gas storages to ensure that societal safety requirements are met. For the development of this LRC design tool, the research issues are related to the prediction of the rock cavern response to a high internal gas pressure; interaction between LRC components; suitability of reliability-based calculation methods for the LRC design; and, effect of uncertainties on the probability of failure of the LRC design.

The results show that the available analytical model to predict the rock cavern response is only applicable for idealized geological conditions and geometries, so numerical models are needed. Finite element (FE) models are therefore developed to account for the complex interaction between LRC components, including the influence of opening of discrete rock joints on the strain concentrations in the steel lining. The adaptive directional importance sampling (ADIS) method is identified to be suitable to perform reliability-based analysis with FE models, requiring only a small number of samples for sufficiently accurate estimations of small probabilities of failure. The structural reliability of the LRC design is found to be sensitive to the rock mass quality and the correlation between geological properties.

Abstract [sv]

Lagring av stora mängder vätgas i underjordiska inklädda bergrum (LRC)skulle kunna bidra till en effektiv försörjning av fossilfri energi. Konsekvenserna av läckage i sådana lager kan vara katastrofala, så braberäkningsmodeller behövs för att kunna verifiera att brottsannolikheten i LRC är tillräckligt liten. De tillgängliga beräkningsmodellerna är dock förenklade. Dessutom är beräkningen av små brottsannolikheter utmanande i sig och blir ännu svårare i kombination med representativa numeriska modeller, eftersom sådana modeller kräver långa beräkningstider.

Syftet med denna doktorsavhandling är att utveckla ett sannlikhetsbaserat designverktyg för att uppfylla de säkerhets krav som ställs vid lagring av trycksatt gas i LRC. De specifika forskningsfrågorna är relaterade till modellerandet av bergrummets mekaniska beteende; interaktionen mellan LRC-komponenter; lämpligheten av sannolikhetsbaserade beräkningsmetoder för LRC-designen; samt effekten av osäkerheter på sannolikheten för brott i LRC-designen.

Resultaten visar att den befintliga analytiska modellen för att modellera bergrummets beteende endast är tillämpbar för idealiserade geologiska förhållanden och geometrier, vilket indikerar att numeriska modeller behövs. Sådana modeller har därför utvecklats för att ta hänsyn tilli nteraktionen mellan LRC-komponenter, vilka beaktar hur öppning av bergssprickor påverkar stålinklädnadens töjning. Den adaptiva riktade viktningssamplingsmetoden (ADIS) har identifierats vara lämplig för att utföra sannolikhetsbaserade analyser med FE-modellerna, eftersom ADIS kan ge tillräckligt exakta uppskattningar av små brottsannolikheter trots få körningar av den numeriska modellen. Brottsannolikhetsberäkningarna har visat sig vara känsliga för främst bergmassans kvalitet och korrelationen mellan geologiska egenskaper.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 85
Series
TRITA-ABE-DLT ; 2242
Keywords
Lined rock cavern, reliability-based design, analytical modeling, finite element modeling, underground gas storage, Inklädda bergrum, tillförlitlighetsbaserad design, analytisk modellering, finita elementmodellering, underjordisk gaslagring
National Category
Geotechnical Engineering
Research subject
Civil and Architectural Engineering, Soil and Rock Mechanics
Identifiers
urn:nbn:se:kth:diva-321073 (URN)978-91-8040-404-4 (ISBN)
Public defence
2022-12-02, D2, Lindstedtsvägen 9, KTH Campus, https://kth-se.zoom.us/j/64410297205, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 42684-2 and P2022-00209
Note

QC 221110

Available from: 2022-11-10 Created: 2022-11-04 Last updated: 2022-11-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Damasceno, Davi RodriguesSpross, JohanJohansson, Fredrik

Search in DiVA

By author/editor
Damasceno, Davi RodriguesSpross, JohanJohansson, Fredrik
By organisation
Soil and Rock Mechanics
In the same journal
Journal of Rock Mechanics and Geotechnical Engineering
Geotechnical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 239 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf