kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting Customer Satisfaction in the Context of Last-Mile Delivery using Supervised and Automatic Machine Learning
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The prevalence of online shopping has steadily risen in the last few years. In response to these changes, last-mile delivery services have emerged that enable goods to reach customers within a shorter timeframe compared to traditional logistics providers. However, with decreased lead times follows greater exposure to risks that directly influence customer satisfaction. More specifically, this report aims to investigate the extent to which Supervised and Automatic Machine Learning can be leveraged to extract those features that have the highest explanatory power dictating customer ratings. The implementation suggests that Random Forest Classifier outperforms both Multi-Layer Perceptron and Support Vector Machine in predicting customer ratings on a highly imbalanced version of the dataset, while AutoML soars when the dataset is subject to undersampling. Using Permutation Feature Importance and Shapley Additive Explanations, it was further concluded that whether the delivery is on time, whether the delivery is executed within the stated time window, and whether the delivery is executed during the morning, afternoon, or evening, are paramount drivers of customer ratings. 

Abstract [sv]

Förekomsten av online-shopping har kraftigt ökat de senaste åren. I kölvattnet av dessa förändringar har flertalet sista-milen företag etablerats som möjliggör för paket att nå kunder inom en kortare tidsperiod jämfört med traditionella logistikföretag. Däremot, med minskade ledtider följer större exponering mot risker som direkt påverkar kundernas upplevelse av sista-milen tjänsten. Givet detta syftar denna rapport till att undersöka huruvida övervakad och automtisk maskininlärning kan användas för att extrahera de parametrar som har störst påverkan på kundnöjdhet. Implementationen visar att slumpmässiga beslutsträd överträffar både neurala nätverk och stödvektorsmaskiner i syfte att förutspå kundnöjdhet på en obalanserad version av träningsdatan, medan automatisk maskininlärning överträffar övriga modeller på en balanserad version. Genom användning av metoderna Permutation Feature Importance och Shapley Additive Explanations, framgick att huruvida paketet är försenad, huruvida paketet levereras inom det angivet tidsfönster, och huruvida paketet anländer under morgonen, eftermiddagen, eller kvällen, har störst påverkan på kundnöjdhet.

Place, publisher, year, edition, pages
2022. , p. 46
Series
TRITA-EECS-EX ; 2022:564
Keywords [en]
Last-mile Delivery, Customer Satisfaction, Supervised Machine Learning, Automatic Machine Learning, Imbalanced Datasets
Keywords [sv]
Sista-milen Leveranser, Kundnöjdhet, Övervakad Maskininlärning, Automatiserad Maskininlärning, Obalanserade Dataset
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-321133OAI: oai:DiVA.org:kth-321133DiVA, id: diva2:1708843
External cooperation
Airmiz AB
Supervisors
Examiners
Available from: 2022-11-10 Created: 2022-11-07 Last updated: 2022-11-10Bibliographically approved

Open Access in DiVA

fulltext(1077 kB)609 downloads
File information
File name FULLTEXT01.pdfFile size 1077 kBChecksum SHA-512
6f7f51065e689c58847f13fd88d37c4a105cade92a2e23208c1670e33944cf89587e91c4d97aeb2037a08701f62016a1946343ed0712bc4cbd034c2fdbf9114e
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 609 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 913 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf