kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Foresee the Unseen: Sequential Reasoning about Hidden Obstacles for Safe Driving
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics. (Digital Futures)ORCID iD: 0000-0001-9982-578X
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. Scania CV AB, S-15187 Södertälje, Sweden. (Digital Futures)ORCID iD: 0000-0002-2069-6581
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. (Digital Futures)ORCID iD: 0000-0001-7461-920X
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0003-4173-2593
Show others and affiliations
2022 (English)In: 2022 IEEE Intelligent Vehicles Symposium (IV), Institute of Electrical and Electronics Engineers (IEEE), 2022, p. 255-264Conference paper, Published paper (Refereed)
Abstract [en]

Safe driving requires autonomous vehicles to anticipate potential hidden traffic participants and other unseen objects, such as a cyclist hidden behind a large vehicle, or an object on the road hidden behind a building. Existing methods are usually unable to consider all possible shapes and orientations of such obstacles. They also typically do not reason about observations of hidden obstacles over time, leading to conservative anticipations. We overcome these limitations by (1) modeling possible hidden obstacles as a set of states of a point mass model and (2) sequential reasoning based on reachability analysis and previous observations. Based on (1), our method is safer, since we anticipate obstacles of arbitrary unknown shapes and orientations. In addition, (2) increases the available drivable space when planning trajectories for autonomous vehicles. In our experiments, we demonstrate that our method, at no expense of safety, gives rise to significant reductions in time to traverse various intersection scenarios from the CommonRoad Benchmark Suite.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022. p. 255-264
Series
IEEE Intelligent Vehicles Symposium, ISSN 1931-0587
National Category
Computer graphics and computer vision
Identifiers
URN: urn:nbn:se:kth:diva-320423DOI: 10.1109/IV51971.2022.9827171ISI: 000854106700037Scopus ID: 2-s2.0-85135375265OAI: oai:DiVA.org:kth-320423DiVA, id: diva2:1708935
Conference
33rd IEEE Intelligent Vehicles Symposium (IEEE IV), JUN 05-09, 2022, Aachen, Germany
Note

QC 20221107

Part of proceedings: 978-1-6654-8821-1

Available from: 2022-11-07 Created: 2022-11-07 Last updated: 2025-04-14Bibliographically approved
In thesis
1. Mind the Unknown: Risk- and Occlusion-Aware Motion Planning for Autonomous Vehicles
Open this publication in new window or tab >>Mind the Unknown: Risk- and Occlusion-Aware Motion Planning for Autonomous Vehicles
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Autonomous vehicles (AVs) must navigate uncertain environments while ensuring safety, particularly in scenarios involving risk and occlusions. This thesis develops structured approaches to risk- and occlusion-aware motion planning, integrating theoretical advancements with real-world validation.

To address risk in motion planning, we introduce a framework that quantifies both the probability and severity of safety violations, enabling AVs to reason about risk while maintaining operational efficiency. Complementing this, we investigate pedestrian-aware motion planning in urban environments, incorporating a harm-based risk model to balance safety and progress in interactions with vulnerable road users.

Occlusions pose a major challenge by limiting direct visibility of critical road users. We develop a method for tracking and reasoning about hidden obstacles using reachability analysis and formal logics. By incorporating prior observations, our approach systematically refines possible states of occluded agents, reducing unnecessary conservatism. For high-speed driving, we refine velocity bounds on occluded traffic participants, preventing worst-case assumptions that could lead to excessive braking. Additionally, we explore vehicle-to-everything (V2X) communication to enhance situational awareness, enabling AVs to infer and share information about occluded regions in real time.

Finally, we propose an occlusion-aware planning framework that integrates tree-based motion planning with reachability-based occlusion tracking. This enables AVs to proactively reason about future observations—or their absence—ensuring robust decision-making under limited sensing. By reducing overly conservative constraints while maintaining safety guarantees, our approach addresses key issues in occlusion-aware motion planning.

Together, these contributions advance the ability of AVs to operate safely and efficiently in demanding environments, supporting scalable real-world deployment.

Abstract [sv]

Autonoma fordon måste fatta säkra beslut trots osäkerheter i trafiken, särskilt i riskfyllda situationer och när sikten är begränsad. Denna avhandling presenterar metoder för att planera ett fordons rörelser på ett sätt som tar hänsyn till både risker och skymda hinder. Här kombineras teoretiska resultat med praktisk validering i realistiska trafikförhållanden.

För att hantera riskerna i planeringen introducerar vi ett ramverk som systematiskt bedömer både sannolikheten och konsekvenserna av potentiella säkerhetsproblem. Detta möjliggör en mer nyanserad plan som tar hänsyn till säkerheten utan att begränsa fordonet i onödan. Vi studerar särskilt planering i stadstrafik och utvecklar en riskmodell som väger säkerhet mot effektiv framkomlighet vid möten med exempelvis fot\-gängare och cyklister.

Skymd sikt utgör en utmaning för autonoma fordon. För att bemöta detta utvecklar vi en metod baserad på räckviddsanalys och logisk slutledning, som kan resonera kring möjliga dolda trafikanter. Genom att använda tidigare observationer kan metoden utesluta omöjliga scenarier och därmed undvika överdrivet defensiva beslut. För motorvägskörning inför vi även antaganden om trafikanters möjliga accelerationer, vilket ytterligare minskar behovet av onödiga inbromsningar. Dessutom undersöker vi hur fordonskommunikation (V2X) kan användas för att dela information om skymda områden och därmed förbättra fordonens beslutsunderlag.

Slutligen föreslår vi ett planeringsramverk där en trädstruktur av möjliga rörelser kombineras med räckviddsanalys för att hantera skymd sikt. Detta tillåter att proaktivt resonera kring framtida observationer och deras möjliga frånvaro. På så sätt kan fordonen fatta säkra och effektiva beslut även när sikten är begränsad. Vår metod adresserar därmed viktiga utmaningar inom området och bidrar till att minska onödiga säkerhetsmarginaler utan att kompromissa med säkerheten. Tillsammans stärker dessa resultat autonoma fordons förmåga att navigera säkert och effektivt i komplexa trafikmiljöer. Detta öppnar för bredare användning i verkliga trafiksystem.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 58
Series
TRITA-EECS-AVL ; 2025-42
National Category
Robotics and automation
Identifiers
urn:nbn:se:kth:diva-362364 (URN)978-91-8106-247-2 (ISBN)
Public defence
2025-05-09, Kollegiesalen,Brinellvägen 6, https://kth-se.zoom.us/j/62547376681, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20250415

Available from: 2025-04-15 Created: 2025-04-14 Last updated: 2025-04-28Bibliographically approved

Open Access in DiVA

fulltext(8942 kB)9 downloads
File information
File name FULLTEXT01.pdfFile size 8942 kBChecksum SHA-512
064cd59bad91f7dd716def8fc41d3e88dde8eb42425ed6656bb1823b8fd1fb192986c853ddf6ead2d9097eaedad402bf0c8c1a89a609609d8edd01a69d380d35
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Gaspar Sánchez, José ManuelNyberg, TrulsPek, ChristianTumova, JanaTörngren, Martin

Search in DiVA

By author/editor
Gaspar Sánchez, José ManuelNyberg, TrulsPek, ChristianTumova, JanaTörngren, Martin
By organisation
MechatronicsRobotics, Perception and Learning, RPL
Computer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar
Total: 9 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 221 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf