kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Indirect 3D Bioprinting of a Robust Trilobular Hepatic Construct with Decellularized Liver Matrix Hydrogel
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland.
Biopromic AB, 17165 Solna, Sweden.
Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India.ORCID iD: 0000-0002-3588-1800
Show others and affiliations
2022 (English)In: Bioengineering, E-ISSN 2306-5354, Vol. 9, no 11, p. 603-603Article in journal (Refereed) Published
Abstract [en]

The liver exhibits complex geometrical morphologies of hepatic cells arranged in a hexagonal lobule with an extracellular matrix (ECM) organized in a specific pattern on a multi-scale level. Previous studies have utilized 3D bioprinting and microfluidic perfusion systems with various biomaterials to develop lobule-like constructs. However, they all lack anatomical relevance with weak control over the size and shape of the fabricated structures. Moreover, most biomaterials lack liver-specific ECM components partially or entirely, which might limit their biomimetic mechanical properties and biological functions. Here, we report 3D bioprinting of a sacrificial PVA framework to impart its trilobular hepatic structure to the decellularized liver extracellular matrix (dLM) hydrogel with polyethylene glycol-based crosslinker and tyrosinase to fabricate a robust multi-scale 3D liver construct. The 3D trilobular construct exhibits higher crosslinking, viscosity (182.7 ± 1.6 Pa·s), and storage modulus (2554 ± 82.1 Pa) than non-crosslinked dLM. The co-culture of HepG2 liver cells and NIH 3T3 fibroblast cells exhibited the influence of fibroblasts on liver-specific activity over time (7 days) to show higher viability (90–91.5%), albumin secretion, and increasing activity of four liver-specific genes as compared to the HepG2 monoculture. This technique offers high lumen patency for the perfusion of media to fabricate a densely populated scaled-up liver model, which can also be extended to other tissue types with different biomaterials and multiple cells to support the creation of a large functional complex tissue.

Place, publisher, year, edition, pages
MDPI AG , 2022. Vol. 9, no 11, p. 603-603
National Category
Biomaterials Science Gastroenterology and Hepatology
Identifiers
URN: urn:nbn:se:kth:diva-321147DOI: 10.3390/bioengineering9110603ISI: 000881052100001PubMedID: 36354514Scopus ID: 2-s2.0-85141701251OAI: oai:DiVA.org:kth-321147DiVA, id: diva2:1708985
Funder
Swedish Research Council, 2015-05378Swedish Research Council, 2019-05170European Commission, 610472
Note

QC 20221108

Available from: 2022-11-07 Created: 2022-11-07 Last updated: 2025-02-11Bibliographically approved
In thesis
1. Decellularized liver extracellular matrix as a 3D scaffold for bioengineering applications
Open this publication in new window or tab >>Decellularized liver extracellular matrix as a 3D scaffold for bioengineering applications
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The increasing global burden of end-stage liver disease has increased the need for liver transplantation, the definitive cure. However, there is a huge discrepancy between the number of available organ donors and the number of patients waiting for transplantation, resulting in the deaths of a significant number of patients on the waiting list as only 10% of the global need for transplantation is met. Liver tissue engineering is a promising alternative solution to this problem, which utilizes bioengineering techniques to create an ex vivo microenvironment niche for liver cells embedded in a liver-specific extracellular matrix (ECM) for cell growth and function. Despite many advances in this field, the scarcity of appropriate ECM-mimicking biomaterials with good mechanical properties for biofabrication technique remains limited. To address this, different biofabrication techniques, such as bioprinting and biomaterial scaffolds, are studied to simulate liver microarchitecture for different applications. This thesis presents the development and application of a decellularized liver extracellular matrix hydrogel combined with the liver cell line HepG2 (papers 1-3). It also focuses on the decellularized whole liver scaffold to differentiate amniotic epithelial cells (paper 4). The decellularized liver extracellular matrix (dLM) is a cell-free scaffold that retains liver-specific components to direct cell growth and functions. The dLM can be digested to form hydrogel for 3D bioprinting applications, or it can be used as a biomaterial scaffold to seed the cells directly. In paper I, porcine dLM hydrogel was modified with gelatin and a PEG-based crosslinker to induce a cytocompatible gelation mechanism to generate a robust bioink with a 16-fold increment in viscosity and a 32-fold increment in storage modulus as compared to unmodified dLM hydrogel. This work established the application of dLM with other biofabrication methods, such as Indirect bioprinting, where a sacrificial biopolymer is 3D printed, and the scaffold material is subsequently added. In paper II, a 3D-printed polyvinyl alcohol framework resembling the liver lobules was used as a sacrificial scaffold to impart its structure to the dLM hydrogel modified with PEG-based crosslinker and mushroom tyrosinase. The crosslinked dLM hydrogel with co-culture of HepG2 and NIH 3T3 fibroblasts cell line retained the structure of PVA to create a scaled-up liver-like microarchitecture with lobules. The PVA dissolved with cell culture media leaving behind a robust 3D construct of dLM hydrogel. In paper III, cellulose nanofibril-coated HepG2 spheroids incorporating dLM hydrogel were studied for tumor modeling. The dLM incorporation affected the spheroid formation and growth depending on the time of addition. In paper IV, the functional differentiation of amniotic epithelial cells into hepatocyte-like cells was performed in a decellularized rat liver scaffold in a perfusion bioreactor with dynamic oxygenation and media exchange. This dLM perfusion technology supported the maturation and proliferation of amniotic epithelial cells into hepatocyte-like cells. This is a preliminary step into developing a liver-like organ model in a laboratory setting. 

To conclude, this thesis presents different bioengineering approaches, such as 3D bioprinting and perfusion decellularization, to study the 3D dLM scaffolds for HepG2 and amniotic epithelial cell culture. 3D bioprinting technique utilized a robust dLM hydrogel to create a scaled-up microarchitecture, whereas perfusion decellularization retained the natural 3D architecture of the whole liver ECM and the native vascular system for recellularizing the scaffold with stem cells. We successfully modified and characterized the dLM hydrogel to enhance its printability to develop complex structures such as liver lobules and microchannels. We utilized different cell systems, including monoculture, co-culture, and spheroids, to analyze the biocompatibility, cell proliferation, and liver-specific functions of the dLM scaffold. Ultimately, the advancement of dLM as a biomaterial presented in this thesis could improve the application and modification of various decellularized tissues to generate larger-scale models for in vitro testing and organ transplantation.

Abstract [sv]

Den global ökningen av skrumplever, eller levercirros, har ökat behovet av levertransplantationer, det definitiva botemedlet. Det finns dock en stor skillnad mellan antalet organdonatorer och antalet patienter som väntar på transplantation. Detta leder till att många patienter på väntelistan dör i väntan på transplantation, eftersom endast 10 % behovet tillgodoses. Vävnadsrekonstruktion av levervävnad erbjuder en alternativ lösning på detta problem, som använder bioteknik för att skapa en rätt mikromiljö för levercellergenom att bädda in dem i en leverspecifik s.k extracellulär matris (ECM). Trots många framsteg är tillgången på lämpliga ECM-liknande biomaterial med goda mekaniska egenskaper för vävnadsrekonstruktion fortfarande begränsad. Därför har vi studerat olika biotekniska tillverkningsmetoder, t ex bioprinting och ramverk av biomaterial för att simulera leverns mikroarkitektur. 

Denna avhandling presenterar utvecklingen och tillämpningen av ett gelmaterial tillverkat av extracellulär matrix från lever (artikel 1-3) kombinerat med levercellinjen HepG2 (artikel 4) eller leverliknande celler, för vävnadsrekonstruktion. Efter att levercellerna avlägsnats behåller leverns extracellulära matrix (dLM) leverspecifika komponenter som kan styra celltillväxt och funktioner. I 3D bioprinting kan en robust dLM-baserad hydrogel användas för att skapa en leverliknande mikroarkitektur. Dessutom bibehålls den naturliga 3D-arkitekturen och kärlstrukturen hos leverns ECM och kan inympas med önskvärda celler. I artikel I modifierades dLM-hydrogel från gris med gelatin och en PEG-baserad tvärbindare för att resultera i ett robust biobläck för 3D utskrifter med en goda mekaniska egenskaper, jämfört med omodifierad dLM hydrogel. Detta arbete etablerade användningen av dLM för nya tillverkningsmetoder för utskriven vävnad t ex Indirekt bioprinting, där en offer-biopolymer 3D-printas och vävnads-ramverket därefter läggs till. I artikel II användes ett 3D-utskrivet ramverk av polyvinylalkohol som tillfällig gjutform för en modifierad dLM-hydrogel. dLM-hydrogelen stelnade på PVA-strukturen, där lever- och fibroblastceller kunde odlas. PVAt löstes upp när cellodlingsmedia tillsattes, och lämnade efter sig en rekonstruerad vävnadsstruktur. I artikel III studerades en nanocellulosabelagd sfäroidmodell av lever- och tjocktarms celler innehållande dLM för läkemedelsscreening. I artikel IV utfördes den funktionella differentiering av stamceller från fostervatten till lever-liknande celler i ett vävnadsramverk från råtta i en perfusionsbioreaktor med dynamisk syresättning och mediautbyte.

Sammanfattningsvis presenterar denna avhandling olika biotekniska metoder såsom 3D bioprinting och perfusionsdecellularisering, för att studera 3D ramverk för vävnadsrekonstruktion av dLM, och odling av celler i dessa. Vi har framgångsrikt modifierat och karakteriserat dLM-hydrogelen för att förbättra dess 3D utskriftsegenskaper i komplexa strukturer som leverlobuli och mikrokanaler. Vi använde olika cellsystem inklusive monokultur, samodling och sfäroider för att karakterisera celltillväxt och leverspecifika funktioner i dLM-ramverket. Utvecklingen av dLM som biomaterial att kommer att öka förutsättningarna för vävnadsrekonstuktion för att skapa uppskalade organmodeller för läkemedelstestning och organtransplantation.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 91
Series
TRITA-CBH-FOU ; 2022:59
Keywords
liver decellularization, decellularized liver matrix bioink, bioprinting, sacrificial scaffold, viscoelasticity, bioengineering, tumor modeling, stem cell differentiation, bioreactor
National Category
Biomaterials Science Engineering and Technology Biological Sciences
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-321180 (URN)978-91-8040-421-1 (ISBN)
Public defence
2022-12-02, Karolina, Widerströmska huset, Tomtebodavägen 18a, via Zoom: https://kth-se.zoom.us/j/69659607478, Solna, 10:00 (English)
Opponent
Supervisors
Note

QC 2022-11-08

Available from: 2022-11-08 Created: 2022-11-08 Last updated: 2022-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Khati, VamakshiGaudenzi, GiuliaRussom, Aman

Search in DiVA

By author/editor
Khati, VamakshiPati, FalguniGaudenzi, GiuliaRussom, Aman
By organisation
Nano BiotechnologyScience for Life Laboratory, SciLifeLabCenter for the Advancement of Integrated Medical and Engineering Sciences, AIMES
In the same journal
Bioengineering
Biomaterials ScienceGastroenterology and Hepatology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 175 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf